Questions concerning the document and proposed changes shall be addressed to

John M. Haynes
john.haynes@colostate.edu
(970) 491-8535
Document Revision History

<table>
<thead>
<tr>
<th>Date</th>
<th>Revision</th>
<th>Description</th>
<th>Section(s) Affected</th>
</tr>
</thead>
<tbody>
<tr>
<td>28 October 2019</td>
<td>0</td>
<td>Initial release</td>
<td>All</td>
</tr>
</tbody>
</table>
Contents

1 Introduction 5

2 Product Resolution, Format, and Naming 5
 2.1 Horizontal resolution ... 5
 2.2 Vertical resolution ... 5
 2.3 Temporal resolution .. 7
 2.4 File naming convention .. 7
 2.5 File format ... 8

3 Level 3 Product Setup 8

4 Level 3-Full 10
 4.1 Dimensions used by Level 3-Full 10
 4.1.1 cmask, cclass, and precip dimensions 10
 4.1.2 refl dimension ... 10
 4.1.3 ccol dimension ... 11
 4.1.4 cclass_col dimension 11
 4.2 Level 3-Full variables on levels 11
 4.2.1 Level_count variable 11
 4.3 Level 3-Full variables in columns 12
 4.3.1 Column_count variable 12
 4.3.2 Column_class_count variable 12
 4.3.3 Column_count_total variable 12

5 Level 3-Simplified 12
 5.1 Simplified cloud mask, cloud class, and precipitation dimensions for Level 3-Simplified 13
 5.1.1 cmask_s dimension ... 13
 5.1.2 cclass_s dimension ... 13
 5.1.3 precip_s dimension ... 13
 5.2 Level 3-Simplified variables on levels 14
 5.2.1 Counts_on_levels variable 14
 5.2.2 Occurrence_on_levels variable 14
 5.2.3 Reflectivity_on_levels variable 15
 5.3 Level 3-Simplified variables in columns 15
 5.3.1 Counts_in_column variable 15
 5.3.2 Occurrence_in_column variable 15
 5.3.3 Counts_in_column_by_class variable 16
 5.3.4 Counts_in_column_total variable 16
 5.3.5 Occurrence_in_column_by_class variable 16

6 Product versioning and production 17
 6.1 Algorithm version ... 17
 6.2 Run number ... 17
6.3 Requirements on input data availability and uniformity 17

7 Global attributes ... 18
1 Introduction

This document provides an overview of the CloudSat Level 3 RMCP (Reflectivity - Cloud Mask - Cloud Class - Precipitation) gridded data product. There are two broad categories of Level 3 products.

- Level 3-Full products contain histograms of cloud, precipitation, and reflectivity variables on vertical levels and in columns.
- Level 3-Simplified products are wholly formed using data available in the Level 3-Full products, and contain variables and classifications in a more user-friendly format. These products contain means of radar reflectivity, and cloud/precipitation variables broken into simpler categorizations than the Level 3-Full products.

It is recommended that most users start with the Level 3-Simplified product. Level 3-Simplified products are intended to answer common inquiries about occurrence of clouds of various types (or classes, as they are referred to throughout this document), as well as precipitation occurrence observed by CloudSat, on both vertical levels and in columns. The Level 3-Full products are, in some sense, expert level products. They will be most useful to advanced users who find that the Level 3-Simplified products are aggregated in ways that do not meet their particular needs.

2 Product Resolution, Format, and Naming

2.1 Horizontal resolution

Products are produced at at several fixed horizontal resolutions. The lowest such resolution at present is 5 degrees longitude by 5 degrees latitude. The reason that finer resolution products should not be used individually (i.e. without aggregating with other Level 3 products) lies in statistical significance. Figure 1 shows the number of unique day and night visits of CloudSat to a horizontally-oriented grid box of size $1\times1^\circ$, $2.5\times2.5^\circ$, and $5\times5^\circ$, during one 16 day repeat cycle. This number generally increases from low latitudes to high latitudes since the grid boxes become smaller in terms of area, and the orbits converge. At $1\times1^\circ$, some grid boxes are never visited. To prevent this from occurring and to remove most orbital artifacts, a minimum size of $5\times5^\circ$ was chosen for the initial product release.

The variables lat and lon (dimensions of the same names) are of type float and contain the latitudes and longitude of the product, respectively, in degrees.

2.2 Vertical resolution

The Level 3 products retain the full vertical resolution of the radar, which is 240 m (as oversampled and reported in the 2B-GEOPROF products). Variables are binned for each CloudSat profile based on the height of the bin above mean sea level.
Figure 1: Number of unique visits of CloudSat to a horizontally-oriented grid box of size $1 \times 1^\circ$ (top), $2.5 \times 2.5^\circ$ (middle), and $5 \times 5^\circ$ (bottom), during one 16 day repeat cycle. Assumes both day and night radar operation.
The variable *height* (dimension of the same name) is of type float and contains the height values used in the product, which spans the range of -480 to 18000 m above mean sea level in 240 m increments (77 levels).

There are two broad types of variables in the Level products: "level variables" and "column variables".

- **Level variables** are specified for each *lon*, *lat*, and *height*.
- **Column variables** are specified for each *lon* and *lat*. They are independent of *height*.

2.3 Temporal resolution

The products are regularly produced for three time periods, subject to Level 2 data availability:

- month
- season (a three month period, such as June-July-August)
- year

See section 6.3 for more information about how missing input data may preclude the production of Level 3 products for a given time period.

2.4 File naming convention

Files are named according to the following convention:

```
ZZZZZZ_CS_3X-PROD_[AA]x[BB]_R[CC]_V[DDDD]_U[FFF].nc
```

- **ZZZZZZ** Indicates time period represented, in one of the following formats:
 - `YYYY-MM` month MM of year YYYY
 - `YYYY-MMM` season (three month period) of year YYYY; note that the year corresponds to the start of the season, so 2008-DJF represents December 2008 through February 2009
 - `YYYY` year YYYY
 - `YYY1-M1-YYY2-M2` month M1 of year YYY1 through month M2 of year YYY2

In the above notation, years are referenced as the four digit year (e.g. 2007). Months are represented by their two digit representation (e.g. 01 for January, 12 for December). Seasons are represented by either DJF (December-January-February), MAM (March-April-May), JJA (June-July-August), or SON (September-October-November).

- **X** ‘F’ for level 3-Full, or ‘S’ for level 3-Simplified
- **PROD** product name (in this case, RMCP)
AA longitude resolution in degrees
BB latitude resolution in degrees
CC CloudSat product revision, e.g. 05 for R05 products
DDDD Level 3 algorithm version, starting with 0001 for first production run
FFF A run number, starting with 001. Each run corresponds to a fixed set of input Level 2 granules. See section 6 for a discussion of algorithm version and run number.

2.5 File format

Level 3 products are distributed in netCDF-4 format and are compatible with the CF version 1.6 metadata convention (http://cfconventions.org).

A very capable viewer for these products is NASA’s Panoply application: https://www.giss.nasa.gov/tools/panoply

3 Level 3 Product Setup

The Level 3-Full and 3-Simplified products contain data segregated into the following categories:

- **reflectivity** classification (Z)

 Classification based on radar reflectivity, with gaseous attenuation not removed (2B-GEOPROF variable `Radar_reflectivity`)

- **cloud mask** classification (C)

 Classification based on the presence of cloud according to the 2B-GEOPROF cloud mask (2B-GEOPROF variable `CPR_Cloud_mask`)

- **cloud class** classification (D)

 Classification based on the cloud class (type) (2B-CLDCLASS variable `cloud_scenario`)

- **precipitation state** classification (P)

 Classification based on the presence of precipitation at the surface (2C-PRECIP-COLUMN variable `Precip_flag`)

Level 3 data is created by looping over all available 2B-GEOPROF (Marchand et al. 2008) granules within a given time range, then looping over all vertically-oriented range bins. Whether a granule falls within a given time range is determined by the time of the first profile in the granule. For every 2B-GEOPROF granule that is located, an associated downstream 2B-CLDCLASS (Sassen and Wang 2008) and 2C-PRECIP-COLUMN (Haynes et al. 2009) granule may also be present; if so, information from these granules is also read and processed. This allows any radar bin to be classified into a state for cloud mask (C), cloud class (D), and precipitation presence at the surface.
(P), as described below. Since precipitation is only classified at the surface, all vertical bins within the same radar profile will be assigned the same precipitation state. The possible values of C, D, and P are shown in Tables 1, 2, and 3, respectively.

Table 1: Cloud mask classification (C) based on \textit{CPR_Cloud_mask} from 2B-GEOPROF

<table>
<thead>
<tr>
<th>Value of C</th>
<th>CPR_Cloud_mask</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>C0</td>
<td>0</td>
<td>clear</td>
</tr>
<tr>
<td>C1</td>
<td>>0 and <20</td>
<td>cloud unlikely or clutter</td>
</tr>
<tr>
<td>C2</td>
<td>20</td>
<td>cloud possible, but weak echo</td>
</tr>
<tr>
<td>C3</td>
<td>30</td>
<td>cloud probable</td>
</tr>
<tr>
<td>C4</td>
<td>40</td>
<td>cloud very likely</td>
</tr>
<tr>
<td>C5</td>
<td><0 or >40</td>
<td>unknown or missing</td>
</tr>
</tbody>
</table>

Table 2: Cloud class (D) based on \textit{cloud_class} from 2B-CLDCLASS

<table>
<thead>
<tr>
<th>Value of D</th>
<th>cloud_class bit values</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>D0</td>
<td>0000</td>
<td>clear</td>
</tr>
<tr>
<td>D1</td>
<td>0001</td>
<td>cirrus</td>
</tr>
<tr>
<td>D2</td>
<td>0010</td>
<td>altostratus</td>
</tr>
<tr>
<td>D3</td>
<td>0011</td>
<td>altocumulus</td>
</tr>
<tr>
<td>D4</td>
<td>0100</td>
<td>stratus</td>
</tr>
<tr>
<td>D5</td>
<td>0101</td>
<td>stratocumulus</td>
</tr>
<tr>
<td>D6</td>
<td>0110</td>
<td>cumulus</td>
</tr>
<tr>
<td>D7</td>
<td>0111</td>
<td>nimbostratus</td>
</tr>
<tr>
<td>D8</td>
<td>1000</td>
<td>deep convection</td>
</tr>
<tr>
<td>D9</td>
<td>other</td>
<td>unknown or missing</td>
</tr>
</tbody>
</table>

Table 3: Precipitation state (P) at the surface based on \textit{Precip_flag} from 2C-PRECIP-COLUMN

<table>
<thead>
<tr>
<th>Value of P</th>
<th>Precip_flag</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>P0</td>
<td>0</td>
<td>no precipitation</td>
</tr>
<tr>
<td>P1</td>
<td>1</td>
<td>rain possible</td>
</tr>
<tr>
<td>P2</td>
<td>2</td>
<td>rain probable / drizzle</td>
</tr>
<tr>
<td>P3</td>
<td>3</td>
<td>rain certain</td>
</tr>
<tr>
<td>P4</td>
<td>4</td>
<td>snow possible</td>
</tr>
<tr>
<td>P5</td>
<td>5</td>
<td>snow certain</td>
</tr>
<tr>
<td>P6</td>
<td>6</td>
<td>mix possible</td>
</tr>
<tr>
<td>P7</td>
<td>7</td>
<td>mix certain</td>
</tr>
<tr>
<td>P8</td>
<td><0 or >7</td>
<td>unknown or missing</td>
</tr>
</tbody>
</table>

Note that while 2B-GEOPROF granules are required for Level 3 processing, the associated 2C-PRECIP-COLUMN and 2B-CLDCLASS granules are not. (These granules may be missing for a variety of reasons, such as missing upstream inputs, algorithm errors, delays in processing, etc.) Therefore there will be instances when the cloud mask can be characterized, but the precipitation state or cloud class cannot. In these instances C or D is set to the ‘unknown or missing’ value.

Three variables in the Level 3 products specify which Level 2 granules were used as inputs. The dimension of these variables is num_granule:
• \textit{Granule_2B_GEOPROF} is of type int and contains a list of component 2B-GEOPROF granule numbers.

• \textit{Granule_uses_precip_flag} is of type short and is set to 1 if the corresponding 2C-PRECIP-COLUMN granule was used in the analysis (otherwise it is set to 0).

• \textit{Granule_uses_cloudclass_flag} is of type short and is set to 1 if the corresponding 2B-CLDCLASS granule was used in the analysis (otherwise it is set to 0).

Users of these products should be aware that CloudSat operated during both daytime and nighttime from the start of the mission in 2006 through 2011 April 17, but experienced a battery anomaly at that time that resulted in a long period when the radar was shutdown. When operations resumed on 2011 October 28, CloudSat operated in a Daylight-only Operations mode (DO-Op) to preserve charge in the faulty battery. DO-Op operations continue to the present date. Comparisons between data from before and after this period may introduce day/night biases. More information about significant dates and events in the CloudSat mission that may affect interpretation of Level 3 products can be found on the CloudSat Data Processing Center webpage:

http://www.cloudsat.cira.colostate.edu/data-products/information/epochs

4 Level 3-Full

Level 3-Full products contain raw counts of events occurring as a function of latitude, longitude, height, reflectivity, cloud mask, cloud class, and precipitation type at the surface. An event is defined as an observation from one radar bin within one vertical profile.

Level 3-Full does not further process these raw counts. As noted in the introduction, such processing is instead output in the Level 3-Simplified products.

4.1 Dimensions used by Level 3-Full

4.1.1 \textit{cmask, cclass, and precip} dimensions

The values associated with the \textit{cmask, cclass, and precip} dimensions used in Level 3-Full are given by Tables 1, 2, and 3, respectively.

4.1.2 \textit{refl} dimension

There are 39 values associated with the \textit{refl} dimension which are described in Table 4. A range of reflectivity values are retained, including atmospheric returns (reflectivities less than about 25 dBZ) and larger returns associated with the earth’s surface. No correction is made for gaseous attenuation. The \textit{refl} dimension labels provided in the product files are a simplification of the actual values shown in Table 4.
Table 4: Meaning of \textit{refl} dimension

<table>
<thead>
<tr>
<th>Value</th>
<th>Range (dBZ)</th>
<th>Value</th>
<th>Range (dBZ)</th>
<th>Value</th>
<th>Range (dBZ)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>-36 to -34</td>
<td>13</td>
<td>-10 to -8</td>
<td>26</td>
<td>16 to 18</td>
</tr>
<tr>
<td>1</td>
<td>-34 to -32</td>
<td>14</td>
<td>-8 to -6</td>
<td>27</td>
<td>18 to 20</td>
</tr>
<tr>
<td>2</td>
<td>-32 to -30</td>
<td>15</td>
<td>-6 to -4</td>
<td>28</td>
<td>20 to 22</td>
</tr>
<tr>
<td>3</td>
<td>-30 to -28</td>
<td>16</td>
<td>-4 to -2</td>
<td>29</td>
<td>22 to 24</td>
</tr>
<tr>
<td>4</td>
<td>-28 to -26</td>
<td>17</td>
<td>-2 to 0</td>
<td>30</td>
<td>24 to 26</td>
</tr>
<tr>
<td>5</td>
<td>-26 to -24</td>
<td>18</td>
<td>0 to 2</td>
<td>31</td>
<td>26 to 34</td>
</tr>
<tr>
<td>6</td>
<td>-24 to -22</td>
<td>19</td>
<td>2 to 4</td>
<td>32</td>
<td>34 to 42</td>
</tr>
<tr>
<td>7</td>
<td>-22 to -20</td>
<td>20</td>
<td>4 to 6</td>
<td>33</td>
<td>42 to 50</td>
</tr>
<tr>
<td>8</td>
<td>-20 to -18</td>
<td>21</td>
<td>6 to 8</td>
<td>34</td>
<td>50 to 58</td>
</tr>
<tr>
<td>9</td>
<td>-18 to -16</td>
<td>22</td>
<td>8 to 10</td>
<td>35</td>
<td>58 to 64</td>
</tr>
<tr>
<td>10</td>
<td>-16 to -14</td>
<td>23</td>
<td>10 to 12</td>
<td>36</td>
<td>\textgreater{}=64</td>
</tr>
<tr>
<td>11</td>
<td>-14 to -12</td>
<td>24</td>
<td>12 to 14</td>
<td>37</td>
<td>\textless{}-36</td>
</tr>
<tr>
<td>12</td>
<td>-12 to -10</td>
<td>25</td>
<td>14 to 16</td>
<td>38</td>
<td>missing</td>
</tr>
</tbody>
</table>

4.1.3 \textit{ccol} dimension

The \textit{ccol} dimension is associated with a test of whether the 2B-GEOPROF \textit{CPR_cloud_mask} indicates there is cloud anywhere within a given radar profile. It has three possible values which are described in Table 5.

Table 5: Meaning of \textit{ccol} dimension

<table>
<thead>
<tr>
<th>Value</th>
<th>Meaning</th>
<th>Value of C in Table 1</th>
<th>Value of CPR_Cloud_mask</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>No cloud in column</td>
<td>\textit{C}^2, \textit{C}^3, and \textit{C}^4 not in column</td>
<td>\textgreater{}=20 and \textless{}=40 not in column</td>
</tr>
<tr>
<td>1</td>
<td>Cloud somewhere in column</td>
<td>\textit{C}^2, \textit{C}^3, or \textit{C}^4 in column</td>
<td>\textgreater{}=20 or \textless{}=40 in column</td>
</tr>
<tr>
<td>2</td>
<td>Column cloud not determined</td>
<td>\textit{C}^5 in column</td>
<td>\textless{}0 or \textgreater{}=40 in column</td>
</tr>
</tbody>
</table>

4.1.4 \textit{cclass_col} dimension

The \textit{cclass_col} dimension is associated with a test of whether the class of cloud provided by 2B-CLDCLASS indicates there is cloud of a given class anywhere within a given radar profile. It has nine possible values which are described in Table 6.

4.2 Level 3-Full variables on levels

4.2.1 \textit{Level_count} variable

The variable \textit{Level_count} is dimensioned \texttt{(lat x lon x height x cmask x cclass x precip)} and is of type int. It contains counts of event occurrence as a function of the reflectivity, cloud mask, cloud class, and precipitation classifications.
Table 6: Meaning of cclass_col dimension

<table>
<thead>
<tr>
<th>Value</th>
<th>Type of cloud in column</th>
<th>Value of D in Table 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>No cloud in column</td>
<td>None of $D_1, D_2, ..., D_8$</td>
</tr>
<tr>
<td>1</td>
<td>Cirrus</td>
<td>D_1</td>
</tr>
<tr>
<td>2</td>
<td>Altostratus</td>
<td>D_2</td>
</tr>
<tr>
<td>3</td>
<td>Altocumulus</td>
<td>D_3</td>
</tr>
<tr>
<td>4</td>
<td>Stratus</td>
<td>D_4</td>
</tr>
<tr>
<td>5</td>
<td>Stratocumulus</td>
<td>D_5</td>
</tr>
<tr>
<td>6</td>
<td>Cumulus</td>
<td>D_6</td>
</tr>
<tr>
<td>7</td>
<td>Nimbostratus</td>
<td>D_7</td>
</tr>
<tr>
<td>8</td>
<td>Deep convection</td>
<td>D_8</td>
</tr>
</tbody>
</table>

4.3 Level 3-Full variables in columns

4.3.1 Column_count variable

The variable `Column_count` is dimensioned (lat x lon x ccol x precip) and is of type int. It contains counts of event occurrence anywhere in a column as a function of the column cloud and precipitation classifications.

4.3.2 Column_class_count variable

The variable `Column_count` is dimensioned (lat x lon x cclass_col x precip) and is of type int. It contains counts of event occurrence anywhere in a column as a function of cloud class in the column and precipitation classifications.

4.3.3 Column_count_total variable

The variable `Column_count_total` is dimensioned (lat x lon x precip) and is of type int. It contains counts of event occurrence anywhere in a column as a function of precipitation classifications.

This variable is intended to be used in conjunction with `Column_class_count`. Since multiple cloud classes can occur in one radar profile at the same time, this variable provides a total count of the number of times a particular column was visited during the analysis.

5 Level 3-Simplified

Level 3-Simplified undergoes more processing than Level 3-Full so-as to produce a more user-friendly product, with some choices (such as what cloud mask values constitute "cloudy") made for the user.
5.1 Simplified cloud mask, cloud class, and precipitation dimensions for Level 3-Simplified

For ease of use, three new dimensions are created for the Level 3 products that contain combinations of the C, D, and P classifications.

- **cmask_s**: simplified cloud mask dimension
- **cclass_s**: simplified cloud class dimension
- **precip_s**: simplified precipitation classification dimension

5.1.1 cmask_s dimension

There are two values associated with the cmask_s dimension which are described in Table 7.

<table>
<thead>
<tr>
<th>Value</th>
<th>Meaning</th>
<th>Value of C in Table 1</th>
<th>Value of CPR_Cloud_mask</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>All cases (Clear+Cloudy)</td>
<td>$C0, C1, C2, C3, C4$</td>
<td>≥ 0 and ≤ 40</td>
</tr>
<tr>
<td>1</td>
<td>Cloud present</td>
<td>$C2, C3, C4$</td>
<td>≥ 20 and ≤ 40</td>
</tr>
</tbody>
</table>

5.1.2 cclass_s dimension

There are nine values associated with the cclass_s dimension which are described in Table 8 (these are a subset of the cloud class state values described in Table 1).

<table>
<thead>
<tr>
<th>Value</th>
<th>Meaning</th>
<th>Value of D in Table 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>All cases (Clear+Any cloud type)</td>
<td>$D1, D2, ..., D8$</td>
</tr>
<tr>
<td>1</td>
<td>Cirrus</td>
<td>$D1$</td>
</tr>
<tr>
<td>2</td>
<td>Altostratus</td>
<td>$D2$</td>
</tr>
<tr>
<td>3</td>
<td>Altocumulus</td>
<td>$D3$</td>
</tr>
<tr>
<td>4</td>
<td>Stratus</td>
<td>$D4$</td>
</tr>
<tr>
<td>5</td>
<td>Stratocumulus</td>
<td>$D5$</td>
</tr>
<tr>
<td>6</td>
<td>Cumulus</td>
<td>$D6$</td>
</tr>
<tr>
<td>7</td>
<td>Nimbostratus</td>
<td>$D7$</td>
</tr>
<tr>
<td>8</td>
<td>Deep convection</td>
<td>$D8$</td>
</tr>
</tbody>
</table>

5.1.3 precip_s dimension

There are seven values associated with the precip_s dimension which are described in Table 9 (these are a subset of the precipitation state values described in Table 3).
Table 9: Meaning of precip_s dimension

<table>
<thead>
<tr>
<th>Value</th>
<th>Meaning</th>
<th>Value of P in Table 3</th>
<th>Value of Precip_flag</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>All cases</td>
<td>$P_0, P_1, ..., P_7$</td>
<td>0, 1, ..., 7</td>
</tr>
<tr>
<td>1</td>
<td>Precip=no</td>
<td>P_0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>Precip=yes</td>
<td>P_2, P_3, P_5, P_7</td>
<td>2, 3, 5, 7</td>
</tr>
<tr>
<td>3</td>
<td>Drizzle</td>
<td>P_2</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>Rain+drizzle</td>
<td>P_2, P_3</td>
<td>2, 3</td>
</tr>
<tr>
<td>5</td>
<td>Snow</td>
<td>P_5</td>
<td>5</td>
</tr>
<tr>
<td>6</td>
<td>Mix</td>
<td>P_7</td>
<td>7</td>
</tr>
</tbody>
</table>

5.2 Level 3-Simplified variables on levels

5.2.1 Counts_on_levels variable

The variable `Counts_on_levels` is dimensioned $(\text{lat} \times \text{lon} \times \text{height} \times \text{cmask_s} \times \text{cclass_s} \times \text{precip_s})$ and is of type int. It contains counts of event occurrence as a function of the simplified cloud mask, cloud class, and precipitation classifications.

5.2.2 Occurrence_on_levels variable

The variable `Occurrence_on_levels` is dimensioned $(\text{lat} \times \text{lon} \times \text{height} \times \text{cmask_s} \times \text{cclass_s} \times \text{precip_s})$ and is of type float. It contains the frequency of occurrence of events as a function of the simplified cloud mask, cloud class, and precipitation classifications.

It can be used to determine cloud frequency of occurrence, the frequency of occurrence of a specific cloud class, and the frequency of occurrence of precipitation at a given, latitude, longitude, and height.

For example, at a location with $(\text{lat}, \text{lon}, \text{height})$ indices given by (i, j, k):

1. The overall frequency of occurrence of cloud is given by `Occurrence_on_levels (i,j,k,1,0,0)`

2. The frequency of occurrence of cumulus is given by `Occurrence_on_levels (i,j,k,0,6,0)`

3. The frequency of occurrence of nimbostratus when snow is also occurring at the surface is given by `Occurrence_on_levels (i,j,k,0,7,5)`

Note that the overall frequency of occurrence of cloud on a given level should be determined as in example 1 (using the `cmask_s` dimension) if the class of cloud is not of interest. Although it is possible to calculate an overall cloud frequency of occurrence using the `cclass_s` dimension by summing over all possible cloud classes, this may not produce an accurate result! i.e.

\[
\text{Occurrence_on_levels}(i, j, k, 1, m, n) \\
\neq \sum_{t=1}^{8} \text{Occurrence_on_levels}(i, j, k, 0, t, n). \quad (1)
\]
The reason for the discrepancy is that cloud frequency of occurrence determined using the cmask_s dimension is valid regardless of whether 2B-CLDCLASS inputs were available.

5.2.3 Reflectivity_on_levels variable

The variable Reflectivity_on_levels is dimensioned (lat x lon x height x cmask_s x cclass_s x precip_s) and is of type float. It contains the mean radar reflectivity as a function of the simplified cloud mask, cloud class, and precipitation classifications.

The mean radar reflectivity is calculated from the Level 3-Full reflectivity bins using

$$Z_{\text{mean}} = 10 \log_{10} \left(\sum_{i=1}^{36} C_i 10^{Z_{e_i}/10} + C_{37} 10^{Z_{e_{36}}/10} + C_{38} 10^{Z_{e_0}/10} \right),$$

where C_i is the count of radar reflectivity values in the reflectivity bin i, with midpoint value Z_{e_i}.

Reflectivity bins are defined in Table 4.

For example, at a location with (lat, lon, height) indices given by (i, j, k):

1. The mean radar reflectivity of cloud is given by Reflectivity_on_levels (i,j,k,1,0,0)
2. The mean radar reflectivity of cirrus is given by Reflectivity_on_levels (i,j,k,0,1,0)
3. The mean radar reflectivity of cirrus when underlying clouds are producing surface precipitation is given by Reflectivity_on_levels (i,j,k,0,1,2)

5.3 Level 3-Simplified variables in columns

5.3.1 Counts_in_column variable

The variable Counts_in_column is dimensioned (lat x lon x cmask_s x precip_s) and is of type int. It contains counts of event occurrence anywhere in a column as a function of the simplified cloud mask and precipitation classifications.

5.3.2 Occurrence_in_column variable

The variable Occurrence_in_column is dimensioned (lat x lon x cmask_s x precip_s) and is of type float. It contains the frequency of occurrence of events as a function of the simplified cloud mask and precipitation classifications.

It can be used to determine cloud frequency of occurrence anywhere in the column and the frequency of occurrence of precipitation at a given latitude and longitude, without regard to where the event occurred vertically in the column.

For example, at a location with (lat, lon) indices given by (i, j):
(1) The overall frequency of occurrence of cloud anywhere in the column is given by
\(\text{Occurrence_in_column} (i,j,1,0) \)

(2) The frequency of occurrence of precipitation is given by \(\text{Occurrence_in_column} (i,j,0,2) \),
and the frequency of occurrence of snow is given by \(\text{Occurrence_in_column} (i,j,0,5) \)

It is noteworthy that the precipitation frequency of occurrence given by
\(\text{Occurrence_in_column} (i,j,0,a) \) (for any value of a) is equal to that provided by
\(\text{Occurrence_on_levels} (i,j,k,0,0,a) \), so long as k is large enough that the associated level is above
all possible topography. This is because, as previously noted, precipitation is only determined for
the surface and is therefore "mirrored" by all values within a column.

5.3.3 Counts_in_column_by_class variable

The variable \(\text{Counts_in_column_by_class} \) is dimensioned \((\text{lat} \times \text{lon} \times \text{cclass_s} \times \text{precip_s}) \)
and is of type int. It contains counts of event occurrence anywhere in a column as a function of the
simplified cloud class and precipitation classifications.

5.3.4 Counts_in_column_total variable

The variable \(\text{Counts_in_column_total} \) is dimensioned \((\text{lat} \times \text{lon} \times \text{precip_s}) \) and is of type
int. It contains counts of event occurrence anywhere in a column as a function of the precipitation
classification.

The reason this variable is necessary is that multiple cloud classes can occur in one radar profile at
the same time.

5.3.5 Occurrence_in_column_by_class variable

The variable \(\text{Occurrence_in_column_by_class} \) is dimensioned \((\text{lat} \times \text{lon} \times \text{cmask_s} \times \text{precip_s}) \)
and is of type float. It contains the frequency of occurrence of events as a function of the simplified
cloud class and precipitation classifications.

It can be used to determine cloud frequency of occurrence by class anywhere in the column and
the frequency of occurrence of precipitation associated with that cloud class at a given latitude and
longitude.

For example, at a location with \((\text{lat}, \text{lon})\) indices given by \((i, j)\):

(1) The frequency of occurrence of cumulus anywhere in the column is given by
\(\text{Occurrence_in_column_by_class} (i,j,6,0) \)

(2) The frequency of occurrence of cumulus occurring simultaneously with surface precipitation
is given by \(\text{Occurrence_in_column_by_class} (i,j,6,2) \)
6 Product versioning and production

Level 3 products are assigned both an algorithm version and run number.

From the end-user perspective, it will be generally desirable to obtain Level 3 products with the highest available algorithm version (e.g. V0001), as this will correspond to the most recently updated version of the algorithm.

Having found the latest algorithm version, users should obtain Level 3 products with the highest available run number (e.g. U001) within that algorithm version, as this will contain results incorporating the most recently available Level 2 data.

6.1 Algorithm version

The algorithm version, as specified in the file metadata and filename (e.g. V0001) corresponds to exactly one unique combination of all of the following:

- Level 3 product codebase
- External settings associated with said codebase

The above items will be archived for each algorithm version. If any of the above are changed in a way that alters the Level 3 product that is produced from a given set of Level 2 input granules, the algorithm version number will be incremented.

Exception: Products produced using a specific algorithm version at a given time and space resolutions may undergo simple aggregations to produce products at new time and space resolutions, and be considered the same algorithm version.

Note: The CloudSat product revision, e.g. R05, is included in the file metadata and filename for reference. A change in this revision number will require incrementing either the algorithm version or the run number.

6.2 Run number

For a given algorithm version, the run number (e.g. U001) corresponds to a particular set of Level 2 input files. The 2B-GEOPROF granule numbers used, and whether corresponding 2C-PRECIP-COLUMN and 2B-CLDCLASS files were used, is recorded in every Level 3 file. The run number will be incremented in situations where Level 3 products are to be updated (because new Level 2 granules become available, or are recalled, etc.) but the algorithm version is unchanged.

6.3 Requirements on input data availability and uniformity

For a given time period, Level 3 products are only produced if Level 2 2B-GEOPROF input data are available. Product production does not depend on the availability of 2B-CLDCLASS or 2C-
PRECIP-COLUMN input data. The presence or absence of such data, however, is contained in the Level 3 variables described in section 3.

To reduce skewing of statistics by missing input data, there is also a requirement that the 2B-GEOPROF input granules are distributed in a sufficiently uniform way throughout the time period. Specifically, the time period is divided into a number of equally sized segments. It is required that a certain fraction of the potential input granules are available in each of these segments. If this fractional availability criterion is not met in any of the segments, no Level 3 product is produced for that time period.

Global attribute minimum_data_segments contains the required number of segments, and minimum_data_fraction contains the required fractional availability of input data required per segment. Currently, the former is set to three (four for the year-long time period), and the latter is set to 0.65.

7 Global attributes

The following global attributes are found in all Level 3 files.

Conventions is currently 'CF-1.6' and defines the convention followed by metadata

description contains a short description of the file contents; it includes information on whether the file is Level 3-Full or 3-Simplified

time_period describes the time period of the file in words, such as 'January 2008 through December 2008'

resolution_lon is the longitude resolution of the product

resolution_lat is the latitude resolution of the product

version is the product version, with elements R[CC]_V[DDDD]_U[FFF] meaning the same as they do in the filename specification (Section 2.4)

geoprof_version contains the information about the version of 2B-GEOPROF files used in production, for example '2B-GEOPROF.P1_R05'

precip_column_version contains the information about the version of 2C-PRECIP-COLUMN files used in production, for example '2C-PRECIP-COLUMN.P1_R05'

cldclass_version contains the information about the version of 2B-CLDCLASS files used in production, for example '2B-CLDCLASS.P1_R05'

minimum_data_fraction contains information about data uniformity requirements; see Section 6.3

minimum_data_segments contains information about data uniformity requirements; see Section 6.3

created is the creation date and time of the file
References

