Questions concerning the document and proposed changes shall be addressed to

Zhien Wang
Zhien.Wang@colorado.edu
303-492-1613
Document Revision History

<table>
<thead>
<tr>
<th>Date</th>
<th>Revision</th>
<th>Description</th>
<th>Section(s) Affected</th>
</tr>
</thead>
<tbody>
<tr>
<td>April 2019</td>
<td>0</td>
<td>Initial Release</td>
<td>All</td>
</tr>
</tbody>
</table>
Table of Contents

1 Introduction .. 4
2 Algorithm Theoretical Basis ... 7
3 Algorithm Inputs ... 13
 3.1 CloudSat ... 13
 3.1.1 Cloud properties from 2B-GEOPROF and 2B-GEOPROF-lidar products 13
 3.2 Ancillary (Non-CloudSat) .. 14
 3.2.1 CALIOP ... 14
 3.2.2 MODIS .. 14
 3.2.3 ECMWF ... 14
 3.2.4 Coastline Map .. 14
 3.2.5 Topographical Map .. 15
 3.3 Input Variable Summary .. 15
 3.4 Control and Calibration ... 15
4 Algorithm Summary .. 16
 4.1 Cloud clustering analysis ... 16
 4.2 The flowchart of cloud scenario classification .. 18
 4.3 Classification Method .. 19
 4.4 Precipitation Identification .. 25
 4.5 Cloud Phase Identification .. 25
5 Data Product Output Format ... 30
6 Operator Instructions .. 30
7 References .. 35
8 Acronym List .. 37
9 Changes Since Algorithm Version P_R04 ... 37
10 Open Issues and comments ... 38
11 Appendix A: 2B-CLDCLASS-LIDAR Interface Control Document 39
 11.1 Input Field Specifications ... 39
 11.2 Product Field Specifications .. 49
1 Introduction

A great strength of microwave radar measurements of clouds and precipitation is the ability to retrieve quantitative content data from the radar reflectivity factor Z. This is made possible by devising algorithms based on empirical relationships between Z and various microphysical parameters, such as ice water content IWC or rainfall rate. However, because of the diversity of microphysical conditions found in the atmosphere, algorithms need to be applied only to those conditions for which they are considered valid. In other words, it is first necessary to identify the target and then select an appropriate algorithm. This is true to implement sophisticated multi-sensor retrieval algorithms. The algorithm selection process depends on such basic factors as cloud phase, and also the hydrometeor density, shape, and size distribution. For example, although cirrus, altostratus, and the upper portions of cumulonimbus clouds are all predominantly ice phase clouds, it is not possible to apply a single algorithm for retrieving IWC in these targets: cirrus generally contain only single ice crystals, altostratus likely contain low-density ice crystal aggregates at the warmer temperatures, and cumulonimbus may combine ice crystals, snowflakes, rimed particles, graupel, and even hailstones. Due to the different radiative forcings of various cloud types (Hartmann et al. 1992; Chen et al. 2000), classifying clouds into categories based on type is also an important task for cloud remote sensing and global cloud climatology studies.

As the first step in converting the vertical profiles of Z from CloudSat into meaningful microphysical data quantities, we are developing an algorithm for identifying cloud type and precipitation. However, measurements of cloud radar alone cannot provide necessary information for cloud scenario classification. The formation fly (A-train) of Aqua, CloudSat and CALIPSO provides other cloud information from lidar and passive radiometer measurements. As described here, we identify eight basic cloud types that are recognized by surface observers internationally by combining information available mainly from the CloudSat and CALIPSO satellites.

a) Different detection sensitivities of lidar and cloud radar

The main difference between lidar and cloud radar is their working wavelengths: optical wavelength for lidar and millimeter wavelength for cloud radar. Table 1 provides the specifications of CloudSat Cloud Profiling Radar (CPR) and CALIPSO lidar (CALIOP). The different wavelengths result in different sensitivities of lidar and radar for cloud particles. Lidar is sensitive enough to detect clouds and aerosols in the troposphere, but its short wavelength results in strong attenuation from them and limits its ability to penetrate optically thick clouds to detect anything beyond them. Lidar, especially space based, is more suitable to profile high and mid-level clouds due to their lower optical thicknesses than low-level clouds. Cloud detection with millimeter cloud radar (k-band
and w-band) has some distinct advantages compared to lidar. For example, 8-mm and 3-mm cloud radars can penetrate optically thick clouds to detect multi-layer cloud systems. However, its long wavelength limits its capability to detect midlevel supercooled water clouds with relatively small water droplets or cold ice clouds with low concentrations of small ice crystals. However, for mixed phase clouds or water clouds with drizzle, cloud radar signals are dominated by the backscatter of ice particles or drizzle-size drops.

Table 1: The specifications of CPR and CALIOP

<table>
<thead>
<tr>
<th></th>
<th>CALIOP</th>
<th>CPR</th>
</tr>
</thead>
<tbody>
<tr>
<td>λ</td>
<td>0.532/1.06 μm</td>
<td>3200 μm</td>
</tr>
<tr>
<td>Pulse Width</td>
<td>~10 ns</td>
<td>3.3/33.3 μsec</td>
</tr>
<tr>
<td>PRF</td>
<td>~20 Hz</td>
<td>4300/800Hz</td>
</tr>
<tr>
<td>P(t)</td>
<td>10^5-10^6 W (peak)</td>
<td>~270 W (avg)</td>
</tr>
<tr>
<td>Scatter of Cloud particles</td>
<td>Mie scatter</td>
<td>Rayleigh/Mie scatter</td>
</tr>
<tr>
<td>Backscattering of cloud particles</td>
<td>∝ D^2</td>
<td>∝ D^6/ ∝ D^2</td>
</tr>
<tr>
<td>Attenuation of Clouds</td>
<td>Strong</td>
<td>Weak</td>
</tr>
</tbody>
</table>

Their different sensitivities are illustrated with following examples. Figure 1 presents examples from ground-based lidar and radar Measurements. The left side of Fig. 1 is a midlatitude case, and shows that cloud radar (top) misses to detect supercooled water clouds, which are optically thick enough to attenuate lidar to detect high cirrus clouds. Another interesting point is that cloud radar detects strong signal from virga because it is much sensitive to larger particles than lidar. The right side of Fig. 1 presents a case from the Arctic, and different cloud images are seen from lidar and radar measurements for

Figure 1. Co-located ground-based lidar and radar measurements. Left: Cloud radar Ze (top) and lidar return (bottom) for middle-level and high cloud layers observed at the SGP site. Right: the time-height display of lidar return (top), mean Doppler velocity (middle) and Ze profiles (bottom) for mixed-phase and ice cloud layers observed at the NSA site.
precipitating altocumulus clouds. Lidar measurements show strong signals for supercooled water-dominated source clouds whereas radar measurements show strong signals for ice virga because of their different sensitivities to cloud particle sizes.

Figure 2 shows a collocated CloudSat CALIPSO example. It is clear that lidar can detect optically thin cirrus clouds in the tropics that are missed by the radar, and lidar signals are strongly attenuated by the optically thick clouds. On the other hand, radar shows better capabilities to profile optically thin clouds and moderate precipitation. But radar has some difficulties to detect stratocumulus without drizzle.

Figure 2. Collocated CloudSat (top) and CALIPSO lidar (532 nm) lidar measurements over a half nighttime orbit on 5 October 2006.

b) Different vertical and horizontal resolutions of CPR and CALIOP

The CPR and CALIOP profile cloud 2-D structure at different horizontal and vertical resolutions as given in Table 2. For clouds below 8.2 km, a CPR footprint contains ~12 CALIOP footprints, thus CALIOP measurements are able to provide fine cloud structure within a CPR footprint. This fine structure is important to characterize cumulus and stratocumulus clouds. The CALIOP also has better vertical resolution than that of CPR, which is important for geometrically thin cloud layer detection, such as altocumulus.

Table 2: The horizontal and vertical resolutions of CPR and CALIOP

<table>
<thead>
<tr>
<th>Altitude Region (km)</th>
<th>Horizontal (km)</th>
<th>Vertical (meters)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CPR</td>
<td>CALIOP</td>
</tr>
<tr>
<td>-2.0 to -0.5</td>
<td>1/3</td>
<td></td>
</tr>
<tr>
<td>-0.5 to 8.2</td>
<td>1.4x1.8</td>
<td>1/3</td>
</tr>
<tr>
<td>8.2 to 20.2</td>
<td>1.4x1.8</td>
<td>1</td>
</tr>
</tbody>
</table>
In summary, combining lidar and radar measurements provide better cloud detection and characterization because of their unique complementary capabilities. Now combining radar and lidar measurements are widely used for cloud studies from cloud macrophysical and microphysical properties. CloudSat and CALIPSO satellites will provide us first opportunity to study cloud from space by combining lidar and radar measurements. In general, cloud optical thickness decreases with altitude (as temperature decrease), thus lidar has more chances to penetrate high and midlevel clouds than low-level clouds. Therefore, there are more advantages to combine lidar and radar measurements from space than from ground. In this document, we discuss how to combine CPR and CALIOP measurements for the cloud phase determination and cloud scenario classification. Combining CPR and CALIOP measurements for ice cloud microphysical property retrievals is provided by the 2C-ICE product (Deng et al. 2010).

2 Algorithm Theoretical Basis

Algorithms based on different cloud spectral, textural, and physical features have been developed for cloud classification from satellites (Welch et al. 1992; Tovinkere et al. 1993; Bankert 1994; Luo et al. 1995; Rossow and Schiffer 1999). The International Satellite Cloud Climatology Project (ISCCP) (Rossow and Schiffer 1999) uses the combination of cloud top pressure and cloud optical depth to classify clouds into either cumulus (Cu), stratocumulus (Sc), stratus (St), altocumulus (Ac), altostratus (As), nimbostratus (Ns), cirrus, cirrostratus, or deep convective clouds. Table 3 shows the basic features of these different cloud types (WMO 1956; Parker 1988; Uddstrom and Gray 1996; Moran et al. 1997). However, with more long-term ground-based remote sensing cloud studies underway, algorithms to classify cloud type using ground-based measurements were developed. Wang and Sassen (2001) developed an algorithm to classify clouds by combining the measurements of ground-based multiple remote sensors. Duchon and O’Malley (1999) studied the possibility of classifying clouds according to ground-based solar flux measurements. Williams et al. (1995) developed an algorithm to classify precipitating clouds into either stratiform, mixed stratiform, convective, and deep or shallow convective clouds using 915-MHz wind profile data.

In this document, we present a new algorithm for CloudSat to classify clouds into either St, Sc, Cu, Nb, Ac, As, deep convective, or high cloud by combining space-based active (CPR and CALIOP) and passive remote sensing (MODIS) data. The class of high cloud includes cirrus, cirrocumulus, and cirrostratus, and Cu cloud represents cumulus congestus and fair weather cumulus. These types may be further classified into sub-types to refine IWC and LWC retrievals.
Table 3 Characteristic cloud features for the major cloud types derived from numerous studies (midlatitude). Our cloud type identification algorithm is based on many of these characteristics. Heights are above ground level.

<table>
<thead>
<tr>
<th>Cloud Class</th>
<th>Cloud Features</th>
</tr>
</thead>
<tbody>
<tr>
<td>High Cloud</td>
<td></td>
</tr>
<tr>
<td>Base</td>
<td>> 7.0 km</td>
</tr>
<tr>
<td>Rain</td>
<td>no</td>
</tr>
<tr>
<td>Horiz. Dim.</td>
<td>1 to 10^3 km</td>
</tr>
<tr>
<td>Vert. Dim.</td>
<td>moderate</td>
</tr>
<tr>
<td>LWP</td>
<td>= 0.</td>
</tr>
<tr>
<td>As</td>
<td></td>
</tr>
<tr>
<td>Base</td>
<td>2.0-7.0 km</td>
</tr>
<tr>
<td>Rain</td>
<td>none</td>
</tr>
<tr>
<td>Horiz. Dim.</td>
<td>10^3 km, homogeneous</td>
</tr>
<tr>
<td>Vert. Dim.</td>
<td>moderate</td>
</tr>
<tr>
<td>LWP</td>
<td>~ 0, dominated by ice</td>
</tr>
<tr>
<td>Ac</td>
<td></td>
</tr>
<tr>
<td>Base</td>
<td>2.0-7.0 km</td>
</tr>
<tr>
<td>Rain</td>
<td>virga possible</td>
</tr>
<tr>
<td>Horiz. Dim.</td>
<td>10^3 km, inhomogeneous</td>
</tr>
<tr>
<td>Vert. Dim.</td>
<td>shallow or moderate</td>
</tr>
<tr>
<td>LWP</td>
<td>> 0</td>
</tr>
<tr>
<td>St</td>
<td></td>
</tr>
<tr>
<td>Base</td>
<td>0-2.0 km</td>
</tr>
<tr>
<td>Rain</td>
<td>none or slight</td>
</tr>
<tr>
<td>Horiz. Dim.</td>
<td>10^2 km, homogeneous</td>
</tr>
<tr>
<td>Vert. Dim.</td>
<td>shallow</td>
</tr>
<tr>
<td>LWP</td>
<td>> 0</td>
</tr>
<tr>
<td>Sc</td>
<td></td>
</tr>
<tr>
<td>Base</td>
<td>0.-2.0 km</td>
</tr>
<tr>
<td>Rain</td>
<td>drizzle or snow possible</td>
</tr>
<tr>
<td>Horiz. Dim.</td>
<td>10^3 km, inhomogeneous</td>
</tr>
<tr>
<td>Vert. Dim.</td>
<td>shallow</td>
</tr>
<tr>
<td>LWP</td>
<td>> 0</td>
</tr>
<tr>
<td>Cu</td>
<td></td>
</tr>
<tr>
<td>Base</td>
<td>0-3.0 km</td>
</tr>
<tr>
<td>Rain</td>
<td>drizzle or snow possible</td>
</tr>
<tr>
<td>Horiz. Dim.</td>
<td>1 km or larger, isolated</td>
</tr>
<tr>
<td>Vert. Dim.</td>
<td>shallow or moderate</td>
</tr>
<tr>
<td>LWP</td>
<td>> 0</td>
</tr>
<tr>
<td>Nb</td>
<td></td>
</tr>
<tr>
<td>Base</td>
<td>0-4.0 km</td>
</tr>
<tr>
<td>Rain</td>
<td>prolonged rain or snow</td>
</tr>
<tr>
<td>Horiz. Dim.</td>
<td>50 -1000 km</td>
</tr>
<tr>
<td>Vert. Dim.</td>
<td>thick</td>
</tr>
</tbody>
</table>
Deep convective clouds

<table>
<thead>
<tr>
<th>Property</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Base</td>
<td>0-3.0 km</td>
</tr>
<tr>
<td>Rain</td>
<td>Intense shower of rain or hail possible</td>
</tr>
<tr>
<td>Horiz. Dim.</td>
<td>10 km or large</td>
</tr>
<tr>
<td>Vert. Dim.</td>
<td>Thick</td>
</tr>
<tr>
<td>LWP</td>
<td>> 0.</td>
</tr>
</tbody>
</table>

a) Measurements used for cloud classification

We classify clouds by using vertical and horizontal cloud properties, the presence or absence of precipitation, cloud temperature, and upward radiance from MODIS measurements. The CPR and CALIOP provide vertical cloud profiles and horizontal extent of clouds, which provide important information to differentiate cloud types. Figure 3 displays CloudSat CPR and CALIPSO CALIOP measurements for close and open cell stratocumulus, which clearly show different sensitivities of lidar and radar for cloud and precipitation measurements. This figure also shows horizontal and vertical variability for different types of clouds.
Figure 3: Examples of ‘3-D’ cloud measurements from the A-train satellites: a) close cell stratocumulus and b) open and clous cell stratocumulus. For each example, from top to bottom are CloudSat Ze, CALIPSO lidar attenuated backscattering, and MODIS true color image.

In addition to active remote sensing data, MODIS radiance measurements from Aqua satellite can be incorporated into the algorithm. Cloud spectral, and textural features derived from radiance data are important supplementary information to cloud vertical and horizontal extents from active remote sensors. However, these MODIS measurements are mainly useful for single layer cloud system. Combing active and passive remote sensing from space provides kind of three-dimensional cloud structure as showed in the Fig. 3.

The CALIOP also provides lidar linear depolarization ratios (δ) of clouds, which can be used for cloud phase discrimination in principle (Sassen 1991). However, the strong influence of multi-scattering on δ for space-based lidar measurements limits the potential of using δ directly. Combining δ, attenuated backscattering coefficient and Z_e profiles provide better cloud phase discrimination. Section 4.5 will provide more details on the cloud phase identification by combining CloudSat and CALIPSO measurements.

Table 4 lists important 2-D cloud structures and properties contributed by CPR and CALIOP measurements for different cloud types. It is clear that combined CPR and CALIOP measurements provide improved cloud macrophysical properties.

<table>
<thead>
<tr>
<th>Cloud Type</th>
<th>CPR</th>
<th>CALIOP</th>
</tr>
</thead>
<tbody>
<tr>
<td>High clouds</td>
<td>Boundaries</td>
<td>Fine Boundaries</td>
</tr>
<tr>
<td>Altostratus</td>
<td>Boundaries, Max Z_e</td>
<td>Phase, Upper boundary</td>
</tr>
<tr>
<td>Altocumulus</td>
<td>----</td>
<td>Phase, Boundaries</td>
</tr>
<tr>
<td>Altocumulus + virga</td>
<td>Boundaries, Max Z_e</td>
<td>Phase, Boundaries</td>
</tr>
<tr>
<td>Cumulus</td>
<td>Boundaries, Max Z_e</td>
<td>Fine horizontal structure</td>
</tr>
<tr>
<td>Stratus and stratocumulus</td>
<td>Boundaries, Max Z_e</td>
<td>Phase, Upper boundary</td>
</tr>
<tr>
<td>Nimbostratus</td>
<td>Boundaries, Max Z_e</td>
<td>Upper boundary</td>
</tr>
<tr>
<td>Deep Convective</td>
<td>Boundaries, Max Z_e</td>
<td>Upper boundary</td>
</tr>
<tr>
<td>Multi-layer cloud system</td>
<td>Boundaries, Max Z_efor each layer</td>
<td>Phase and boundaries of upper layer/layers</td>
</tr>
</tbody>
</table>
Cloud temperature (T) derived from ECMWF predictions is an important cloud property. Using our ground-based cloud classification results (Wang and Sassen 2001), we derive the frequency distribution of different cloud types in maximum Z_e and T (at maximum Z_e height) space (see Fig. 4a and 4b). The features displayed in Fig. 4 are consistent with cloud physics and the microphysical properties of different cloud types.

Figure 4a: Frequency distribution of different types of clouds in the temperature and maximum Z_e space.
Figure 4b: Frequency distribution of different types of clouds in the temperature and maximum Z_e space.
b) Methodology

Role-based classification methods, which assigns different threshold values to characteristic parameters, are simple and easy to use methods, but the results are sensitive to the selection of the thresholds. Instead of using Boolean logic, the proper use of fuzzy logic can improve the results of cloud classification (Penoloza and Welch 1996). The approach of using neural networks to classify cloud type in satellite imagery has shown recent success (Welch et al. 1992; Bankert 1994). The network is trained on selected spectral, textural, and physical features associated with expertly labeled samples. The trained network is subsequently applied to unknown cloud samples. However, these new classification techniques can not guarantee better performance, which depends on how properly designed the classifier is and the selection of features (Tovinkere et al. 1993).

Combined rule-based and fuzzy logic classification approach is used in this algorithm. We use the following strategy to classify clouds. First, combined radar and lidar cloud mask results are used to find a cloud cluster according to their persistence in the horizontal and vertical directions. A minimum horizontal extent for a cluster is required, therefore, a cloud cluster permits horizontally broken, but vertically similar cloud fields.

Once a cloud cluster is found, cloud height, temperature, and maximum Z_e, as well as the occurrence of precipitation, are determined. Then the cluster mean properties as well as spatial inhomogeneties in terms of cloud top height, lidar and radar maximum signals are sent to a fuzzy classifier to classify the cluster into one cloud type with an assigned confidence level.

3 Algorithm Inputs

3.1 CloudSat

3.1.1 Cloud properties from 2B-GEOPROF and 2B-GEOPROF-lidar products
CPR-Z_e profiles and combined lidar and radar boundaries provide horizontal and vertical cloud structure and are main inputs for cloud scenario classification. Inputs from these two products are: Z_e profile, radar cloud mask, geolocation, altitude of each radar bin, surface bin number, and cloud layer information.
3.2 Ancillary (Non-CloudSat)

3.2.1 CALIOP

3.2.1.1 Lidar level 1 attenuated backscattering coefficients
In the Lidar-AUX product, CALIOP attenuated backscattering coefficients at different horizontal resolutions are averaged to the CloudSat horizontal resolution. But it keeps the data at the native CALIOP vertical resolutions for better cloud boundary and phase identifications.

3.2.1.2 Lidar cloud mask at the CloudSat horizontal resolution
This is provided by the Lidar-AUX product, which identifies clouds based on lidar attenuated backscattering coefficients at CloudSat horizontal and CALIPSO vertical resolutions. Cloud fractions within CloudSat footprints are also provided in this product by using fine horizontally resolved CALIPSO measurements.

3.2.2 MODIS
MODIS radiance data of channel 1, 2, 26, 29, 31, and 32 (Ackerman et al. 1998) could be used as supplementary information to CloudSat radar and CALIPSO lidar measurements for cloud scenario classification. Cloud variability orthogonal to the radar ground track will be explored with MODIS radiance data to improve cumulus-type cloud identification. But at this point, MODIS radiance data are not used in the algorithm due to the unavailability of MODIS data after CloudSat and CALIPSO leaving the A-train.

<table>
<thead>
<tr>
<th>Table 5: The MODIS bands used in the MODIS cloud mask algorithm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Band</td>
</tr>
<tr>
<td>------</td>
</tr>
<tr>
<td>1 (250 m)</td>
</tr>
<tr>
<td>2 (250 m)</td>
</tr>
<tr>
<td>26</td>
</tr>
<tr>
<td>29</td>
</tr>
<tr>
<td>31</td>
</tr>
<tr>
<td>32</td>
</tr>
</tbody>
</table>

3.2.3 ECMWF
Temperature profiles are used.

3.2.4 Coastline Map
Land or ocean flag is used.
3.2.5 Topographical Map
It provides surface altitudes above the sea level to estimate the heights of cloud above the surface.

3.3 Input Variable Summary
See the 2B-CLDCLASS-LIDAR Interface Control Document in the appendix A.

3.4 Control and Calibration
No control and calibration are necessary for this algorithm.
Algorithm Summary

First algorithm performs clustering analysis to group individual cloud profiles into a cluster, then calculate cluster features to classify it as one of the standard cloud type. Figure 5 presents the general block structure of the classification algorithm.

4.1 Cloud clustering analysis

Cloud Cluster: One or multiple similar cloud elements
Cloud Element: A group of radar and/or lidar detected and horizontally connected cloud cloud layers with a similar vertical extend. Systematic changes in cloud base or top height, cloud thickness, precipitation, or phase are used to separate horizontally connected cloud layers into different elements.

Because of the strong variabilities of clouds, it is difficult to apply a classification algorithm directly to an individual radar profile. Different types of clouds have different horizontal and vertical extents. The cloud clustering analysis provides cloud horizontal and vertical extent features. For some cloud types, such as Cu and Sc, horizontal extent of a cloud element may be small. Therefore, it is necessary to allow breaks between cloud elements to group multiple similar cloud elements together for the classification. A
CloudSat granule may be divided into a different number of cloud clusters varying with cloud types presented in the granule.
4.2 The flowchart of cloud scenario classification

Figure 6: The algorithm flowchart for cloud scenario classification
4.3 Classification Method

A combination of rule based and fuzzy logical based classification is used in this algorithm to improve classification flexibility. The cloud phase determination is based on rule-based logics and the cloud type classification is mainly based on the fuzzy logics. The general steps to use fuzzy logics for classification are schematically illustrated as:

A priori (expert) knowledge is needed to set the membership functions for the fuzzy sets. The membership functions of main fuzzy sets used in this algorithm are presented in Fig. 7. To calculate the membership of given fuzzy variable, the mean property of the cloud cluster is used. Currently, we use radar surface returns to simply measure precipitation intensity and only consider land and ocean differences.
Table 6 presents two examples to show how fuzzy logical based classification works. Based on the inputs, we will have different memberships (between 0 and 1) for different fuzzy sets. For example with -53.0 °C cloud base temperature, cold cloud base has a membership of 1 and moderate or warm cloud base has a membership of 0. The
membership for different cloud type can be between 0 and 1 too. For the first case, we have membership 1 for high cloud, and 0 for the others. Therefore, we are confident about the output. The second case is more complicated as there are two cloud types (high and As) with non-zero memberships. In the de-fuzzy process, we output a cloud type (high), which has the highest membership, and confidence level given by the normalized membership. However, there is option to output both cloud types with different confidence levels.

Table 6: Examples of fuzzy logical based classification

<table>
<thead>
<tr>
<th>Inputs</th>
<th>Memberships of fuzzy sets</th>
<th>Outputs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Base_H</td>
<td>Top_H</td>
<td>dH</td>
</tr>
<tr>
<td>8.52818</td>
<td>10.1073</td>
<td>1.57921</td>
</tr>
<tr>
<td>Base temperature: cold, moderate, warm</td>
<td>1.00000</td>
<td>0.000000</td>
</tr>
<tr>
<td>Cloud base height: Low, Mid, High</td>
<td>0.000000</td>
<td>0.000000</td>
</tr>
<tr>
<td>Cloud thickness: Thin, Moderate, Thick</td>
<td>0.000000</td>
<td>1.00000</td>
</tr>
<tr>
<td>Cloud cover: Scattered, Moderate, Overcast</td>
<td>0.000000</td>
<td>0.000000</td>
</tr>
<tr>
<td>Cloud horizontal extend: Isolated, Moderate, Extended</td>
<td>0.000000</td>
<td>1.00000</td>
</tr>
<tr>
<td>high_M, As_M, Ac_M, St_M, Sc_m, Cu_M, Ns_M, Deep_M</td>
<td>1.00000</td>
<td>0.000000</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Inputs</th>
<th>Memberships of fuzzy sets</th>
<th>Outputs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Base_H</td>
<td>Top_H</td>
<td>dH</td>
</tr>
<tr>
<td>7.47600</td>
<td>8.26350</td>
<td>0.787620</td>
</tr>
<tr>
<td>Base temperature: cold, moderate, warm</td>
<td>0.888580</td>
<td>0.111420</td>
</tr>
<tr>
<td>Cloud base height: Low, Mid, High</td>
<td>0.000000</td>
<td>0.262000</td>
</tr>
<tr>
<td>Cloud thickness: Thin, Moderate, Thick</td>
<td>0.589114</td>
<td>0.410886</td>
</tr>
<tr>
<td>Cloud cover: Scattered, Moderate, Overcast</td>
<td>0.000000</td>
<td>0.000000</td>
</tr>
<tr>
<td>Cloud horizontal extend: Isolated, Moderate, Extended</td>
<td>0.000000</td>
<td>1.00000</td>
</tr>
<tr>
<td>high_M, As_M, Ac_M, St_M, Sc_m, Cu_M, Ns_M, Deep_M</td>
<td>0.738000</td>
<td>0.262000</td>
</tr>
</tbody>
</table>

Notes:
Base_H, Base_T: cloud base height and temperature.
Top_H, Top_T: cloud top height and temperature.
dH: Cloud thickness.
High_M, As_M, Ac_M, St_M, Sc_M, Cu_M, Ns_M, and Deep_M: memberships for high, As, Ac, St, Sc, Cu, Ns, and Deep clouds.

To accommodate latitude dependent of tropopause height, we vary middle and high cloud definitions according to the latitude bands. The overlap between two variables (such as low cloud and middle cloud) provides the flexibility to hand errors in cloud base height and the freedom to use other parameters, such as cloud temperature (cold, moderate, and warm), precipitation intensity (drizzle, light, heavy), cloud thickness (thin, moderate, and thick), phase (ice, middle and water), to better define the outcomes with confidence.
levels. As an example, the Table 7 lists the main fuzzy roles used to define As and Ac clouds.

<table>
<thead>
<tr>
<th>Property</th>
<th>As</th>
<th>Ac</th>
</tr>
</thead>
<tbody>
<tr>
<td>Height and temperature (base and top)</td>
<td>Middle base; low base and middle or high top</td>
<td>Middle base; low base and middle top; warm or moderate cloud top temperature</td>
</tr>
<tr>
<td>Phase</td>
<td>Ice or mixed-phase</td>
<td>Mixed-phase or water</td>
</tr>
<tr>
<td>Precipitation</td>
<td>No precipitation or isolated drizzle</td>
<td>No precipitation or isolated or drizzle</td>
</tr>
<tr>
<td>Thickness</td>
<td>Moderate or thick or thin ice</td>
<td>Thin or moderate</td>
</tr>
<tr>
<td>Horizontal extend</td>
<td>Moderate or extend or mid-level ice</td>
<td>Isolated or moderated or extended mixed-phase</td>
</tr>
<tr>
<td>Cloud cover</td>
<td>Overcast or moderate mid-level ice clouds</td>
<td>Any</td>
</tr>
</tbody>
</table>

4.4 Precipitation Identification

Precipitation identification is an important step in the classification scheme. The current version algorithm, we use the same approach as the 2B-CLDCLASS product for the precipitation identification. But in the future version, we will use the precipitation flags in the CloudSat precipitation product.

4.5 Cloud Phase Identification

Although clouds can contain only water droplets when > 0°C and only ice crystals when < −40 °C, between 0 and −40 °C, clouds can be of ice, water, or mixed phase composition (Rauber and Tokay 1991; Cober et al. 2001). Cloud properties associated with different cloud phases within this temperature range are complicated and not well known. To identify cloud phase, especially globally, is important to better understand cloud’s role in climate change. Knowing cloud phase also allow for a better cloud type identification. For example, altostratus clouds are mainly ice clouds associated with synaptic scale motions. Due to small scale dynamics, local and embedded mixed-phase clouds can exist.
On the other hand, altocumulus clouds often exist as water or supercooled water with ice virga (mixed-phase). As documented by Zhang et al. (2010) mixed-phase altocumulus clouds are widely distributed.

CALIPSO level-2 scene identification provides water or ice cloud information based on the CALIOP measurements (Hu et al. 2009). However, there are few limitations to identify mixed-phase cloud correctly from space-based lidar measurements because of the strong impacts of multiple scatter on lidar depolarization measurements and the limited penetration of lidar for optically thick clouds. With coincident CloudSat and CALIPSO measurements, we developed a reliable approach to determine cloud layer phase (water, ice, and mixed-phase) and the location of water layer top to avoid the main limitations of the lidar-only based approach.

The approach is based on the fundamental microphysical and optical property differences between ice particle and water droplets. First, ice particles are much large than water droplets. The large ice particles have terminal falling velocity about 1 m/s while small droplets have negligible falling velocity. This different vertical falling speeds affect cloud vertical distributions. Large particles are generally located near the bottom of ice clouds, while large water droplets are normally found near the top of water clouds. In the case of stratiform mixed-phase, ice particles grow quickly in the mixed-phase layer to form ice virga or precipitation below the mixed-phase layer. Second, there are orders of magnitude differences of cloud droplet and ice crystal number concentrations. Ice crystal number concentrations generally increase with temperature decrease and vary from less than 1/L to as high as 100/L within the temperature range warmer than homogeneous ice nucleation. Water droplet concentrations range from as low as 10/cm³ over clear marine boundary layer to as high as 500/cm³ over polluted continental boundary layer.

These microphysical property differences between water and ice phases result in large differences in their radiative properties, therefore, their different contributions to CALIPSO lidar and CloudSat signals (Wang and Sassen 2001). Due to weak attenuation of ice clouds, lidar signals can penetrate ice cloud layer up to a few kilometers. On the other hand, lidar signals are often attenuated by water clouds in just a few hundred meters. Although cloud droplet concentrations are much higher than ice crystal concentrations, CloudSat CPR Z_c in mixed-phase clouds are still dominated by ice particles because Z_c is proportional to the sixth power of particle size under the Rayleigh scattering region.

With these different sensitivities of CloudSat radar and CALIPSO lidar on ice crystals and water droplets, we can effectively determine the phase of a cloud layer. First, by locating a strong signal increase (slope and magnitude) followed by a strong signal
decrease due to attenuation, we detect the location of possible water layer (Wang and Sassen 2001). The cloud number concentration estimated from combined CloudSat and CALIPSO measurements are also used to improve water layer identification. Horizontally orientated plates do produce strong signals like a water layer, but it can be separated from a water layer by its weak attenuation after the strong signal increase.

With lidar identified water layer locations and the maximum radar signals in the layers, we can discriminate supercooled water layer with mixed-phase layer. A temperature dependent Z_e threshold was developed to detect ice occurrence (see Fig. 8, Zhang et al. 2010). If a cloud layer with top colder than -7 °C and having supercooled water region and the layer maximum Z_e larger than the threshold, the cloud layer is regarded as a mixed-phase cloud layer. Otherwise, detected supercooled water layer is regarded as water phase.

The cloud top and base temperatures are also used as the first cut for the phase determination. Figure 9 shows the phase determine logics for lidar-radar detected cloud layers. The different logical paths for the phase determination contain different information, therefore different confidence levels. Together with the phase information for each cloud layer, we also output the confidence level as well as supercooled water layer top. In the HDF file, the cloud phase has values from 1 to 3: 1-ice, 2-mixed-phase, and 3-water.
Figure 8. Water topped stratiform cloud distribution as a function of cloud top temperature and maximum Z_e within 500 m of the top. The thick dashed line indicate the Z_e thresholds.

For layer detected by lidar and radar

- $T_{ice} = -7 ^\circ C$
- $Z_e = f(T_{ice})$
- C1: water layer detected
- C2: ($IBC > 0.015$) and ($T_{ice} > 1$)
- C3: $Z_e > Z_0$
- C4: $T_{ice} < -30$

Figure 9. Logics for the phase determination of lidar-radar detected layers.

The approach didn’t use lidar depolarization ratio and layer integrated attenuated backscattering coefficient (IBC) as CALIPSO phase determination (Hu et al. 2009), but perform well in terms of these layer lidar properties as illustrated in Fig.10. Horizontally oriented ice crystals, which are characterized by low depolarization and high IBC, are correctly identified as ice clouds or mixed-phase clouds. Due to the limited sensitivity of the CPR, it is very likely that report supercooled water layers may contain low concentration small ice crystals, but these ice particles should have a very small contribution on the total water content and optical depth of the cloud layer. Figure 11 show the seasonal cloud phase distribution map based on the 2007 and 2008 data.
Figure 10. Cloud phase distribution in terms of layer mean depolarization ratio and integrated backscattering coefficient (IBC).

Figure 11. Seasonal cloud phase distributions based on 2007 and 2008 observations.
5 Data Product Output Format

The format consists of metadata, which describes the data characteristics, and swath data, which provide cloud type, phase and their qualities for each cloud layer. The different cloud types are outputted based on the following code:
-9 or 0 = Not determined
1 = High cloud
2 = Altostratus
3 = Altocumulus
4 = St
5 = Sc
6 = Cumulus
7 = Nimbostratus Cloud
8 = Deep Convection

The Appendix A provides more details for these outputs.

6 Operator Instructions

The Level 2 cloud scenario classification processing software will be integrated into CORE. It will be called using the standard CORE procedure for calling modules to operate on data files. The output will be in the form of an HDF-EOS structure in memory, which can be saved by CORE and passed on to other Level 2 processing.

This algorithm works at two different modes: radar only and combined radar and MODIS. If there are MODIS data and radar results indicate a single layer cloud system, algorithm selects the combined radar and MODIS mode, otherwise, algorithm uses radar only mode. But the combined radar and MODIS approach is still under development. The different modes are indicated in the outputs with algorithm flag.

For quality assessment purpose, statistics for cloud cover and height are generated. Average cloud covers within 300 CPR profiles are calculated for all clouds, high, middle (As and Ac), low (St, Sc and Cu) and thick (Ns and deep convective) clouds, respectively. The occurrence of multi-layer clouds can be seen from this statistics. The percentage of clouds masked by 2B-GEOPROF and analyzed in this algorithm is also given. It supposes to be 100%, and less than 100% means something wrong in the algorithm. The following is an example of output for cloud cover statistics form test data set 1.
Cloud Cover and Analysis Statistics

Index, Mean Lat, Mean Lon, Percentage of Cloud Mask Analyzed, Cloud Cover: All, High, Mid, Low, and Thick Clouds

<table>
<thead>
<tr>
<th>Index</th>
<th>Mean Lat</th>
<th>Mean Lon</th>
<th>Percentage of Cloud Mask Analyzed</th>
<th>Cloud Cover: All</th>
<th>High</th>
<th>Mid</th>
<th>Low</th>
<th>Thick</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.475</td>
<td>93.484</td>
<td>100.000</td>
<td>18.667</td>
<td>34.333</td>
<td>29.333</td>
<td>0.000</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>4.422</td>
<td>92.859</td>
<td>100.000</td>
<td>39.667</td>
<td>12.333</td>
<td>14.000</td>
<td>41.000</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>7.369</td>
<td>92.230</td>
<td>100.000</td>
<td>24.000</td>
<td>9.333</td>
<td>17.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>4</td>
<td>10.316</td>
<td>91.596</td>
<td>100.000</td>
<td>49.333</td>
<td>7.667</td>
<td>45.667</td>
<td>0.333</td>
<td>0.000</td>
</tr>
<tr>
<td>5</td>
<td>13.261</td>
<td>90.954</td>
<td>100.000</td>
<td>65.667</td>
<td>20.000</td>
<td>43.667</td>
<td>3.333</td>
<td>24.667</td>
</tr>
<tr>
<td>6</td>
<td>16.205</td>
<td>90.301</td>
<td>100.000</td>
<td>75.000</td>
<td>5.667</td>
<td>66.000</td>
<td>6.000</td>
<td>22.000</td>
</tr>
<tr>
<td>7</td>
<td>19.148</td>
<td>89.634</td>
<td>100.000</td>
<td>89.333</td>
<td>4.333</td>
<td>15.333</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>8</td>
<td>22.088</td>
<td>88.951</td>
<td>100.000</td>
<td>100.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>9</td>
<td>25.025</td>
<td>88.248</td>
<td>100.000</td>
<td>100.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>10</td>
<td>27.960</td>
<td>87.520</td>
<td>100.000</td>
<td>100.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>11</td>
<td>30.891</td>
<td>86.763</td>
<td>100.000</td>
<td>100.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>12</td>
<td>33.818</td>
<td>85.972</td>
<td>100.000</td>
<td>100.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>13</td>
<td>36.740</td>
<td>85.139</td>
<td>100.000</td>
<td>100.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>14</td>
<td>39.657</td>
<td>84.257</td>
<td>100.000</td>
<td>100.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>15</td>
<td>42.568</td>
<td>83.315</td>
<td>100.000</td>
<td>100.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>16</td>
<td>45.473</td>
<td>82.301</td>
<td>100.000</td>
<td>100.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>17</td>
<td>48.368</td>
<td>81.200</td>
<td>100.000</td>
<td>100.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>18</td>
<td>51.255</td>
<td>79.991</td>
<td>100.000</td>
<td>100.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>19</td>
<td>54.130</td>
<td>78.648</td>
<td>100.000</td>
<td>100.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>20</td>
<td>56.990</td>
<td>77.136</td>
<td>100.000</td>
<td>100.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>21</td>
<td>59.834</td>
<td>75.407</td>
<td>100.000</td>
<td>100.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>22</td>
<td>62.711</td>
<td>73.348</td>
<td>100.000</td>
<td>100.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>23</td>
<td>65.529</td>
<td>70.922</td>
<td>100.000</td>
<td>100.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>24</td>
<td>68.279</td>
<td>67.993</td>
<td>100.000</td>
<td>100.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>25</td>
<td>70.970</td>
<td>64.325</td>
<td>100.000</td>
<td>100.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>26</td>
<td>73.576</td>
<td>59.581</td>
<td>100.000</td>
<td>100.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>27</td>
<td>76.048</td>
<td>53.225</td>
<td>100.000</td>
<td>100.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>28</td>
<td>78.302</td>
<td>44.419</td>
<td>100.000</td>
<td>100.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
</tbody>
</table>

Cloud height statistics (mean, standard deviation, maximum, and minimum of cloud base and top heights) for different type clouds in different latitudes are also calculated. These results provide useful information when algorithm or input data have problems. For example, if results indicate that high clouds occur below 2 km above sea level, there is something wrong in the algorithm or input data. An example of output for test data set one is given below. Cloud types 1 to 8 represent high, As, Ac, St, Sc, Cu, Ns, and deep convective clouds, respectively.

*******Cloud Height (base and top) Statistics for each type*******

<table>
<thead>
<tr>
<th>Type</th>
<th>Mean</th>
<th>STD</th>
<th>Max</th>
<th>Min</th>
</tr>
</thead>
</table>
| Whole Granule Average | 11.038 | 6.007 | 28.797 | 5.037 | Cloud base

31
<table>
<thead>
<tr>
<th>Cloud top</th>
<th>Cloud top</th>
<th>Tropical Average</th>
<th>Subtropical Average</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.561</td>
<td>12.561</td>
<td>12.561</td>
<td>12.561</td>
</tr>
<tr>
<td>3.786</td>
<td>3.786</td>
<td>3.786</td>
<td>3.786</td>
</tr>
<tr>
<td>5.390</td>
<td>5.390</td>
<td>5.390</td>
<td>5.390</td>
</tr>
<tr>
<td>3.084</td>
<td>3.084</td>
<td>3.084</td>
<td>3.084</td>
</tr>
<tr>
<td>4.133</td>
<td>4.133</td>
<td>4.133</td>
<td>4.133</td>
</tr>
<tr>
<td>0.686</td>
<td>0.686</td>
<td>0.686</td>
<td>0.686</td>
</tr>
<tr>
<td>0.507</td>
<td>0.507</td>
<td>0.507</td>
<td>0.507</td>
</tr>
<tr>
<td>1.467</td>
<td>1.467</td>
<td>1.467</td>
<td>1.467</td>
</tr>
<tr>
<td>1.134</td>
<td>1.134</td>
<td>1.134</td>
<td>1.134</td>
</tr>
<tr>
<td>2.204</td>
<td>2.204</td>
<td>2.204</td>
<td>2.204</td>
</tr>
<tr>
<td>0.420</td>
<td>0.420</td>
<td>0.420</td>
<td>0.420</td>
</tr>
<tr>
<td>4.325</td>
<td>4.325</td>
<td>4.325</td>
<td>4.325</td>
</tr>
<tr>
<td>0.697</td>
<td>0.697</td>
<td>0.697</td>
<td>0.697</td>
</tr>
<tr>
<td>4.651</td>
<td>4.651</td>
<td>4.651</td>
<td>4.651</td>
</tr>
</tbody>
</table>

Note: The table represents data for different locations and categories.
Another quick look for the performance of algorithm is to plot cloud type profile together with radar reflectivity and cloud mask profiles. An example of this plot is given in next page. Horizontal and vertical distributions of cloud types can be easily examined from this kind of plot.
7 References

Chen, T., W. B. Rossow, and Y. Zhang, 2000: Cloud type radiative effects from the international satellite cloud climatology project. Proc. 11th Symposium on Global Change Studies, Long Beach, California, American Meteorological Society, 86-89.

8 Acronym List

Aqua - NASA's Earth Observing System PM Project
ARM - Atmospheric Radiation Measurement (ARM)
CIRA - Cooperative Institute for Research in the Atmosphere
CPR - Cloud Profiling Radar
CORE - CloudSat Operational and Research
EOS - Earth Observing System
HDF - Hierarchical Data Format
IFOV - Instantaneous field of view
IWC - Ice Water Content
LITE - Lidar In-space Technology Experiment
LWC - Liquid Water Content
MMCR - Millimeter-wave cloud radar
MODIS - Moderate Resolution Imaging Spectroradiometer
CALIPSO - Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations
VTCW - Vehicle Time Code Word
SGP - The Southern Great Plains
NSA - The North Slope of Alaska
TWP - The Tropical Western Pacific
CART - Cloud and Radiation Testbed
CRYSAL-FACE - The Cirrus Regional Study of Tropical Anvils and Cirrus Layers - Florida Area Cirrus Experiment
CPL - Cloud Physics Lidar
CRS - Cloud Radar System

9 Changes Since Algorithm Version P_R04

Above algorithm details are based on the R04 release. The major changes for the R05 are summarized below.

a) The analysis of multi-year ground-based lidar and radar measurements of stratiform mixed-phase clouds indicated that ice particles are presented in these clouds when the cloud top temperature is colder than -4 °C (even for cases as warmer as -2°C) and radar detects significant echoes (Zhang et al. 2017). Based
on this study, the Tice threshold in the Fig.9 is changed from -7 °C to -3 °C, which slightly increase mixed-phase cloud occurrence.

b) Improved cloud clustering analysis: To avoid grouping low-level clouds with the middle- or high-level clouds, cloud clustering logics are improved to minimize the occurrence of these cases.

c) The 2B-CLDCLASS-LIDAR uses the cloud fraction reported in the Lidar-aux, which is estimated with CALIOP measurements at the 330m horizontal resolution below the 8.2 km within the CPR footprint. The cloud fraction estimation algorithm was designed for warm boundary layer clouds, which underestimated cloud fractions for polar boundary layer ice clouds due to weaker signals. Now the 2B-CLDCLASS-LIDAR algorithm identifies the possible underestimation and avoids its impact on cloud type classification.

d) Conditions are added to prevent classifying middle-level clouds with a mean top temperature colder than -38 °C as altocumulus (Ac).

e) In the R04, some extensive shallow precipitating clouds were classified as the deep convective clouds, especially in the middle and high latitude. Now changes are made to classify them as Ns.

10 Open Issues and comments

Current outputs are limited to periods with both CPR and CALIOP observations. Thus, there are no cloud type outputs for the nighttime period during the DO-OP operation when only CALIOP measurements are available. In the future, it is possible to develop a lidar-only version of the classification.

Sc and St clouds are difficult to separate due to the footprint size of the averaged signals. Thus, it is better to combine them together as the boundary layer stratiform clouds for statistical analysis.

Cu clouds include fair weather cumulus and cumulus congestus. Fair weather cumulus is typically broken and geometrically thin clouds. Cumulus congestus are more vertically developed and often have top in the middle level. For statistical analyses, it is important to keep this in mind.

Polar regions present many difficult conditions for boundary layer cloud classification. For example, there are often optically ice clouds, which are difficult to fit into any traditional boundary layer cloud types.
Low and middle clouds are separated based on cloud base heights above the surface. Over mountain areas, we could have St, Sc, or Cu clouds with base heights above 7 km or higher in terms of the mean sea level. It is important to keep this in mind to better interpret statistical results.

11 Appendix A: 2B-CLDCLASS-LIDAR Interface Control Document

11.1 Input Field Specifications

(1) Seconds since the start of the granule

<table>
<thead>
<tr>
<th>Name in file:</th>
<th>Profile_time</th>
<th>Range: 0 to 6000</th>
</tr>
</thead>
<tbody>
<tr>
<td>Source:</td>
<td>2B-GEOPROF 012</td>
<td>Missing value:</td>
</tr>
<tr>
<td>Field type (in file):</td>
<td>REAL(4)</td>
<td>Missing value operator:</td>
</tr>
<tr>
<td>Field type (in algorithm):</td>
<td>REAL(4)</td>
<td>Factor: 1</td>
</tr>
<tr>
<td>Dimensions:</td>
<td>nray</td>
<td>Offset: 0</td>
</tr>
<tr>
<td>Units:</td>
<td>seconds</td>
<td>MB: 0.139</td>
</tr>
</tbody>
</table>

Seconds since the start of the granule for each profile. The first profile is 0.

(2) Data status flags

<table>
<thead>
<tr>
<th>Name in file:</th>
<th>Data_status</th>
<th>Range: 0 to 127</th>
</tr>
</thead>
<tbody>
<tr>
<td>Source:</td>
<td>2B-GEOPROF 012</td>
<td>Missing value:</td>
</tr>
<tr>
<td>Field type (in file):</td>
<td>UINT(1)</td>
<td>Missing value operator:</td>
</tr>
<tr>
<td>Field type (in algorithm):</td>
<td>UINT(1)</td>
<td>Factor: 1</td>
</tr>
<tr>
<td>Dimensions:</td>
<td>nray</td>
<td>Offset: 0</td>
</tr>
<tr>
<td>Units:</td>
<td>--</td>
<td>MB: 0.035</td>
</tr>
</tbody>
</table>

This is a bit field that contains data status flags:

Bit 0: missing frame (0=false, 1=true)
Bit 1: SOH missing (0=false, 1=true)
Bit 2: GPS data valid (0=false, 1=true)
Bit 3: 1 PPS lost (0=false, 1=true)
Bit 4: Star tracker 1 (0=off, 1=on)
Bit 5: Star tracker 2 (0=off, 1=on)
Bit 6: Coast (0=false, 1=true)
Bit 7: NISC (0=false, 1=true)

(3) TAI time for the first profile

Name in file: TAI_start
Source: 2B-GEOPROF 012
Field type (in file): REAL(8)
Field type (in algorithm): REAL(8)
Dimensions: <scalar>
Units: seconds

Range: 0 to 6e+008
Missing value:
Missing value operator:
Factor: 1
Offset: 0

The TAI timestamp for the first profile in the data file. TAI is International Atomic Time: seconds since 00:00:00 Jan 1, 1993.

(4) Spacecraft Longitude

Name in file: Longitude
Source: 2B-GEOPROF 012
Field type (in file): REAL(4)
Field type (in algorithm): REAL(4)
Dimensions: nray
Units: degrees

Range: -180 to 180
Missing value:
Missing value operator:
Factor: 1
Offset: 0

Spacecraft geodetic longitude

(5) Spacecraft Latitude

Name in file: Latitude
Source: 2B-GEOPROF 012
Field type (in file): REAL(4)
Field type (in algorithm): REAL(4)
Dimensions: nray
Units: degrees

Range: -90 to 90
Missing value:
Missing value operator:
Factor: 1
Offset: 0

Spacecraft Geodetic Latitude.

(6) Range to the CPR boresight intercept with the geoid

Name in file: Range_to_intercept
Source: 2B-GEOPROF 012
Field type (in file): REAL(4)
Field type (in algorithm): REAL(4)
Dimensions: nray
Units: km

Range: 600 to 800
Missing value:
Missing value operator:
Factor: 1
Offset: 0

Range from the spacecraft to the CPR boresight intercept with the geoid.
(7) Height of range bin in Reflectivity/Cloud Mask above reference surface (~ mean sea level)

- **Name in file**: Height
- **Range**: -5000 to 30000
- **Source**: 2B-GEOPROF 012
- **Field type (in file)**: INT(2)
- **Field type (in algorithm)**: INT(2)
- **Dimensions**: nbin,nray
- **Units**: m
- **MB**: 8.674

Height of the radar range bins in meters above mean sea level.

(8) Radar Reflectivity Factor

- **Name in file**: Radar_Reflectivity
- **Range**: -40 to 50
- **Source**: 2B-GEOPROF 012
- **Missing value**: -88.88
- **Field type (in file)**: INT(2)
- **Field type (in algorithm)**: REAL(4)
- **Dimensions**: nbin,nray
- **Units**: dBZe
- **MB**: 8.674

Radar reflectivity factor Ze is calculated with the echo power and other input data as described in Li and Durden (2001).

(9) CPR Cloud Mask

- **Name in file**: CPR_Cloud_mask
- **Range**: 0 to 40
- **Source**: 2B-GEOPROF 012
- **Missing value**: -9
- **Field type (in file)**: INT(1)
- **Field type (in algorithm)**: INT(1)
- **Dimensions**: nbin,nray
- **Units**:
- **MB**: 4.337

Each CPR resolution volume is assigned 1 bit mask value:

0 = No cloud detected
1 = likely bad data
5 = likely ground clutter
5-10 = weak detection found using along track integration.
20 to 40 = Cloud detected .. increasing values represents clouds with lower chance of a being a false detection.

(10) MODIS scene characterizations

- **Name in file**: MODIS_scene_char
- **Range**: 0 to 9
- **Source**: 2B-GEOPROF 012
- **Missing value**: -9
- **Field type (in file)**: INT(1)
- **Missing value operator**: ==
This data includes MODIS pixel cloudiness characterization using cloudmask bit tests. See Table 3 for a detailed specification.

(11) MODIS scene variability

Name in file: MODIS_scene_var
Source: 2B-GEOPROF 012
Field type (in file): INT(1)
Field type (in algorithm): INT(1)
Dimensions: nray
Units: MB: 0.035

MODIS scene variability -variability of classification assigned to the 1 km MODIS pixels that compose the CloudSat footprint and immediately adjacent region. See Table 5 for a detail specification.

(12) Digital Elevation Map

Name in file: DEM_elevation
Source: 2B-GEOPROF 012
Field type (in file): INT(2)
Field type (in algorithm): INT(2)
Dimensions: nray
Units: meters MB: 0.069

Elevation in meters above Mean Sea Level. A value of -9999 indicates ocean. A value of 9999 indicates an error in calculation of the elevation.

(13) Land Sea Flag

Name in file: Navigation_land_sea_flag
Source: 2B-GEOPROF 012
Field type (in file): UINT(1)
Field type (in algorithm): INT(1)
Dimensions: nray
Units: --

Flag indicating whether spacecraft is over land or sea:
1 = land
2 = ocean
3 = coast

(14) Vertical Binsize

Name in file: Vertical_binsize
Source: 2B-GEOPROF 012
Field type (in file): REAL(4)
Field type (in algorithm): REAL(4)
Dimensions: <scalar>
Units: m

Range: to
Missing value: -9999
Missing value operator: ==
Factor: 1
Offset: 0
MB: 0

Effective vertical height of the radar range bin.

(15) Clutter Reduction Flag

Name in file: Clutter_reduction_flag
Source: 2B-GEOPROF 012
Field type (in file): INT(1)
Field type (in algorithm): INT(1)
Dimensions: nray
Units: nray

Range: to
Missing value:
Missing value operator:
Factor: 1
Offset: 0
MB: 0.035

A value of 1 indicates that an estimate of surface clutter has been subtracted from the observed return power in bins 2 through 5 above the surface. A value of 0 indicates that NO clutter reduction has been applied.

(16) Location of Surface Bin as determined by 1B CPR algorithm. The value here is shifted (as Height)

Name in file: SurfaceHeightBin
Source: 2B-GEOPROF 012
Field type (in file): INT(1)
Field type (in algorithm): INT(1)
Dimensions: nray
Units: nray

Range: 1 to 125
Missing value: -1
Missing value operator: ==
Factor: 1
Offset: 0
MB: 0.035
Location of Surface Bin as determined by 1B CPR algorithm. The value here is shifted (as is the Height matrix) so bins in neighboring rays are about the same height.

(17) Cloud Fraction

Name in file: CloudFraction
Source: 2B-GEOPROF-LIDAR 004
Field type (in file): INT(1)
Field type (in algorithm): INT(1)
Dimensions: nbin,nray
Units:

Range: 0 to 100
Missing value: -9
Missing value operator: ==
Factor: 1
Offset: 0
MB: 4.337

The CloudFraction reports the fraction of lidar volumes in a radar resolution volume that contains hydrometeors. It is recorded per ray and per bin as a 1-byte integer variable. It is a percentage from 0 to 100.

(18) Quality of radar and lidar data

Name in file: UncertaintyCF
Source: 2B-GEOPROF-LIDAR 004
Field type (in file): INT(1)
Field type (in algorithm): INT(1)
Dimensions: nbin,nray
Units:

Range: 0 to 100
Missing value: -9
Missing value operator: ==
Factor: 1
Offset: 0
MB: 4.337

The UncertaintyCF is a description of the quality of radar and lidar data. It is recorded per ray and per bin as 1-byte integer.

0 means that neither radar data nor lidar data was found.
1 indicates that only radar data has been found.
2 indicates that only lidar data has been found.
3 indicates that both radar data and lidar data were found.

(19) Number of hydrometeor layers

Name in file: CloudLayers
Source: 2B-GEOPROF-LIDAR 004

Range: 0 to 5
Missing value: -9
CloudLayers is a description of the number of the observed hydrometeor layers in the vertical column of the radar footprint. It is recoded per ray as 1-byte integer. Its value is from 0 to 5. A maximum of 5 layers are recorded.

(20) Height of Layer Base

Name in file: LayerBase
Source: 2B-GEOPROF-LIDAR 004
Field type (in file): INT(2)
Field type (in algorithm): REAL(4)
Dimensions: ncloud,nray
Units: m

LayerBase is a description of the height of the observed hydrometeor layer base. It is recoded per ray as 4-byte float. Its value is from 0 to 25000. The units are meters.

(21) Height of layer top

Name in file: LayerTop
Source: 2B-GEOPROF-LIDAR 004
Field type (in file): INT(2)
Field type (in algorithm): REAL(4)
Dimensions: ncloud,nray
Units: m

LayerTop is a description of the height of the observed hydrometeor layer top. It is recoded per ray as 4-byte float. Its value is from 0 to 25000. The units are meters.

(22) Flag of layer base

Name in file: FlagBase
Source: 2B-GEOPROF-LIDAR 004
Field type (in file): INT(1)
Field type (in algorithm): INT(1)
Dimensions: ncloud,nray
Units:
FlagBase is the contribution flag for each layer base. It tells which instrument has been used to identify the base height. It is recorded per ray as 1-byte integer.

0 means that neither radar nor lidar finds a layer base.
1 indicates that only the radar has found the base.
2 indicates that only the lidar has found the base.
3 indicates that both radar and lidar have found the base.
-9 corresponds to missing data.

(23) Flag of layer top

Name in file: FlagTop
Source: 2B-GEOPROF-LIDAR 004
Field type (in file): INT(1)
Field type (in algorithm): INT(1)
Dimensions: ncloud,nray
Units:

FlagTop is the contribution flag for each layer top. It tells which instrument is finding the top height. It is recorded per ray as 1-byte integer.

0 means that neither radar nor lidar find a top.
1 indicates that only the radar has found the top.
2 indicates that only the lidar has found the top.
3 indicates that both radar and lidar have found the top.
-9 corresponds to missing data.

(24) Specific humidity

Name in file: Specific_humidity
Source: ECMWF-AUX 008
Field type (in file): REAL(4)
Field type (in algorithm): REAL(4)
Dimensions: nbins,nrays
Units: kg/kg

Specific humidity

(25) Temperature

Name in file: Temperature
Source: ECMWF-AUX 008
Field type (in file): REAL(4)

Temperature
Field type (in algorithm): REAL(4)

- **Factor:** 1
- **Dimensions:** nbin, nray
- **Units:** K
- **MB:** 17.349

(26) Atmospheric pressure

- **Name in file:** Pressure
- **Range:** to
- **Source:** ECMWF-AUX 008
- **Field type (in file):** REAL(4)
- **Field type (in algorithm):** REAL(4)
- **Dimensions:** nbin, nray
- **Units:** Pa
- **MB:** 17.349

(27) Attenuated Backscatter 1064

- **Name in file:** TAB1064
- **Range:** 0 to 0.4
- **Source:** LIDAR-AUX 004
- **Field type (in file):** REAL(4)
- **Field type (in algorithm):** REAL(4)
- **Dimensions:** lidar_l1_583, nray
- **Units:** km^-1 sr^-1
- **MB:** 80.915

Attenuated Backscatter 1064 in a CloudSat footprint

(28) Perpendicular Attenuated Backscatter 532

- **Name in file:** PAB532
- **Range:** 0 to 0.2
- **Source:** LIDAR-AUX 004
- **Field type (in file):** REAL(4)
- **Field type (in algorithm):** REAL(4)
- **Dimensions:** lidar_l1_583, nray
- **Units:** km^-1 sr^-1
- **MB:** 80.915

Perpendicular Attenuated Backscatter 532 in a CloudSat footprint

(29) Total Attenuated Backscatter 532

- **Name in file:** TAB532
- **Range:** 0 to 0.4
- **Source:** LIDAR-AUX 004
- **Field type (in file):** REAL(4)
- **Field type (in algorithm):** REAL(4)
- **Dimensions:** lidar_l1_583, nray
- **Units:** km^-1 sr^-1
- **MB:** 80.915

Total Attenuated Backscatter 532 in a CloudSat footprint
(30) Lidar Cloud Mask

Name in file: Mask
Source: LIDAR-AUX 004
Field type (in file): INT(1)
Field type (in algorithm): INT(1)
Dimensions: Lidar60m,nray
Units: MB: 11.936

Range: 0 to 1
Missing value: -99
Missing value operator: ==
Factor: 1
Offset: 0

Lidar cloud mask detected at CloudSat footprint and 60 m vertical resolution

(31) Lidar 60m bin height

Name in file: height_lidar60m
Source: LIDAR-AUX 004
Field type (in file): REAL(4)
Field type (in algorithm): REAL(4)
Dimensions: Lidar60m
Units: MB: 0.001

Range: -2 to 30
Missing value:
Factor: 1
Offset: 0

Lidar 60m bin height used for the 60m cloud mask

(32) Day/night flag

Name in file: Day_night_flag
Source: LIDAR-AUX 004
Field type (in file): INT(1)
Field type (in algorithm): INT(1)
Dimensions: nray
Units: MB: 0.035

Range: 0 to 1
Missing value:
Factor: 1
Offset: 0

Day_night_flag from CALIPSO file: 0 day and 1 night

(33) Cloud fraction

Name in file: Cloud_fraction
Source: LIDAR-AUX 004
Field type (in file): REAL(4)
Field type (in algorithm): REAL(4)
Dimensions: Lidar60m,nray
Units: %

Range: 0 to 100
Missing value: -99
Missing value operator: ==
Factor: 1
Offset: 0

Cloud fraction in CloudSat footprint calculated with CALIPSO 330 m data. Cloud fraction smaller than 100% is reported mainly for boundary layer clouds.
(34) **Number of CALIPSO profile collocated within a CloudSat footprint**

<table>
<thead>
<tr>
<th>Name in file:</th>
<th>Col_count</th>
<th>Range:</th>
<th>0 to 15</th>
</tr>
</thead>
<tbody>
<tr>
<td>Source:</td>
<td>LIDAR-AUX 004</td>
<td>Missing value:</td>
<td>-99</td>
</tr>
<tr>
<td>Field type (in file):</td>
<td>INT(2)</td>
<td>Missing value operator:</td>
<td>==</td>
</tr>
<tr>
<td>Field type (in algorithm):</td>
<td>INT(2)</td>
<td>Factor:</td>
<td>1</td>
</tr>
<tr>
<td>Dimensions:</td>
<td>nray</td>
<td>Offset:</td>
<td>0</td>
</tr>
<tr>
<td>Units:</td>
<td></td>
<td>MB:</td>
<td>0.069</td>
</tr>
</tbody>
</table>

Number of CALIPSO profile collocated within a CloudSat footprint. The collocation is based on the surface footprint lats and lons of CloudSat and CALIPSO. The distance between them smaller than 1.14 at latitude smaller than 60 degree, and it is increase slightly as latitude increase.

11.2 Product Field Specifications

(1) **Seconds since the start of the granule**

<table>
<thead>
<tr>
<th>Name in file:</th>
<th>Profile_time</th>
<th>Range:</th>
<th>0 to 6000</th>
</tr>
</thead>
<tbody>
<tr>
<td>Source:</td>
<td>2B-GEOPROF 012</td>
<td>Missing value:</td>
<td></td>
</tr>
<tr>
<td>Field type (in file):</td>
<td>REAL(4)</td>
<td>Missing value operator:</td>
<td></td>
</tr>
<tr>
<td>Field type (in algorithm):</td>
<td>REAL(4)</td>
<td>Factor:</td>
<td>1</td>
</tr>
<tr>
<td>Dimensions:</td>
<td>nray</td>
<td>Offset:</td>
<td>0</td>
</tr>
<tr>
<td>Units:</td>
<td>seconds</td>
<td>MB:</td>
<td>0.139</td>
</tr>
</tbody>
</table>

Seconds since the start of the granule for each profile. The first profile is 0.

(2) **UTC seconds since 00:00 Z of the first profile**

<table>
<thead>
<tr>
<th>Name in file:</th>
<th>UTC_start</th>
<th>Range:</th>
<th>0 to 86400</th>
</tr>
</thead>
<tbody>
<tr>
<td>Source:</td>
<td>2B-GEOPROF 012</td>
<td>Missing value:</td>
<td></td>
</tr>
<tr>
<td>Field type (in file):</td>
<td>REAL(4)</td>
<td>Missing value operator:</td>
<td></td>
</tr>
<tr>
<td>Field type (in algorithm):</td>
<td>REAL(4)</td>
<td>Factor:</td>
<td>1</td>
</tr>
</tbody>
</table>
The UTC seconds since 00:00 Z of the first profile in the data file.

(3) TAI time for the first profile

Name in file: TAI_start
Source: 2B-GEOPROF 012
Field type (in file): REAL(8)
Field type (in algorithm): REAL(8)
Dimensions: <scalar>
Units: seconds
Offset: 0
MB: 0

The TAI timestamp for the first profile in the data file. TAI is International Atomic Time: seconds since 00:00:00 Jan 1 1993.

(4) Spacecraft Latitude

Name in file: Latitude
Source: 2B-GEOPROF 012
Field type (in file): REAL(4)
Field type (in algorithm): REAL(4)
Dimensions: nray
Units: degrees
Offset: 0
MB: 0.139

Spacecraft Geodetic Latitude

(5) Spacecraft Longitude

Name in file: Longitude
Source: 2B-GEOPROF 012
Field type (in file): REAL(4)
Field type (in algorithm): REAL(4)
Dimensions: nray
Units: degrees
Offset: 0
MB: 0.139

Spacecraft geodetic longitude
(6) Height of range bin in Reflectivity/Cloud Mask above reference surface (~ mean sea level)

- **Name in file:** Height
- **Source:** 2B-GEOPROF 012
- **Field type (in file):** INT(2)
- **Field type (in algorithm):** INT(2)
- **Dimensions:** nbin,nray
- **Units:** m
- **Range:** -5000 to 30000
- **Missing value:** -9999
- **Factor:** 1
- **Offset:** 0
- **MB:** 8.674

Height of the radar range bins in meters above mean sea level.

(7) Range to the CPR boresight intercept with the geoid

- **Name in file:** Range_to_intercept
- **Source:** 2B-GEOPROF 012
- **Field type (in file):** REAL(4)
- **Field type (in algorithm):** REAL(4)
- **Dimensions:** nray
- **Units:** km
- **Range:** 600 to 800
- **Missing value:**
- **Factor:** 1
- **Offset:** 0
- **MB:** 0.139

Range from the spacecraft to the CPR boresight intercept with the geoid.

(8) Digital Elevation Map

- **Name in file:** DEM_elevation
- **Source:** 2B-GEOPROF 012
- **Field type (in file):** INT(2)
- **Field type (in algorithm):** INT(2)
- **Dimensions:** nray
- **Units:** meters
- **Range:** -9999 to 8850
- **Missing value:** 9999
- **Missing value operator:** ==
- **Factor:** 1
- **Offset:** 0
- **MB:** 0.069

Elevation in meters above Mean Sea Level. A value of -9999 indicates ocean. A value of 9999 indicates an error in calculation of the elevation.

(9) Vertical Binsize

- **Name in file:** Vertical_binsize
- **Source:** 2B-GEOPROF 012
- **Field type (in file):** REAL(4)
- **Field type (in algorithm):** REAL(4)
- **Dimensions:** <scalar>
- **Units:** m
- **Range:**
- **Missing value:** -9999
- **Missing value operator:** ==
- **Factor:** 1
- **Offset:** 0
- **MB:** 0

Effective vertical height of the radar range bin.
(10) **Nominal satellite pitch angle offset from nadir**

- **Name in file:** Pitch_offset
- **Range:** -90 to 90
- **Source:** 2B-GEOPROF 012
- **Missing value:**
- **Field type (in file):** REAL(4)
- **Missing value operator:**
- **Field type (in algorithm):** REAL(4)
- **Factor:** 1
- **Dimensions:** <scalar>
- **Offset:** 0
- **Units:** degrees
- **MB:** 0

The pitch angle offset from nadir during normal operations. Pitch up is positive (radar points along the flight track in the direction of motion), down is negative (radar points along the flight track opposite the direction of motion).

(11) **Nominal satellite roll angle offset from nadir**

- **Name in file:** Roll_offset
- **Range:** -90 to 90
- **Source:** 2B-GEOPROF 012
- **Missing value:**
- **Field type (in file):** REAL(4)
- **Missing value operator:**
- **Field type (in algorithm):** REAL(4)
- **Factor:** 1
- **Dimensions:** <scalar>
- **Offset:** 0
- **Units:** degrees
- **MB:** 0

The roll angle offset from nadir during normal operations. Positive roll results in the radar pointing to the right of the flight track. Negative roll to the left.

(12) **Data Quality**

- **Name in file:** Data_quality
- **Range:** 0 to 127
- **Source:** 2B-GEOPROF 012
- **Missing value:**
- **Field type (in file):** UINT(1)
- **Missing value operator:**
- **Field type (in algorithm):** INT(2)
- **Factor:** 1
- **Dimensions:** nray
- **Offset:** 0
- **Units:** --
- **MB:** 0.035

Flags indicating data quality. If 0, then data is of good quality. Otherwise, treat as a bit field with 8 flags:

0: RayStatus_validity not normal.
1: GPS data not valid.
2: Temperatures not valid.
3: Radar telemetry data quality is not normal.
4: Peak power is not normal.
5: CPR calibration maneuver.
6: Missing frame.
7: Not used.
(13) Data status flags

Name in file: Data_status
Range: 0 to 127
Source: 2B-GEOPROF 012
Missing value:
Field type (in file): UINT(1)
Missing value operator:
Field type (in algorithm): UINT(1)
Factor: 1
Dimensions: nray
Offset: 0
Units: --
MB: 0.035

This is a bit field that contains data status flags:

- Bit 0: missing frame (0=false, 1=true)
- Bit 1: SOH missing (0=false, 1=true)
- Bit 2: GPS data valid (0=false, 1=true)
- Bit 3: 1 PPS lost (0=false, 1=true)
- Bit 4: Star tracker 1 (0=off, 1=on)
- Bit 5: Star tracker 2 (0=off, 1=on)
- Bit 6: Coast (0=false, 1=true)
- Bit 7: NISC (0=false, 1=true)

(14) CPR bus orientation (target ID)

Name in file: Data_targetID
Range: 0 to 81
Source: 2B-GEOPROF 012
Missing value:
Field type (in file): UINT(1)
Missing value operator:
Field type (in algorithm): INT(1)
Factor: 1
Dimensions: nray
Offset: 0
Units: --
MB: 0.035

The target id indicates the orientation of the spacecraft bus. For normal operations the target ID is 0. The complete ID table is listed below:

Control Frame 0
0: CPR to point in 300 seconds - Nominal science mode
1 - 15: Target ID for testing - not planned for operational use

Control Frame 0, CPR Calibration
16: CPR to point in 160 seconds
17: CPR 15° to the right
18: CPR 15° to the left
19: CPR 10° to the right -- default rotation
20: CPR 10° to the left -- default rotation
21: CPR 5° to the right
21: CPR 5° to the left
23 - 29: Target ID for testing - not planned for operational use
30 - 36: CPR rotation - not planned for operational use
37 - 39: Not planned for operational use

Control Frame 1, Four thruster closed-loop
40: Rotation into the OR orientation
41: Rotation into the x-track along the anti-ang momentum
42: Rotation into the x-track along ang momentum
43: Rotation into the orbit lower orientation
44: Rotation into alt. OR w/ CPR away from Sun
45 - 49: Not planned for operational use

Control Frame 2, One thruster open-loop
50: Rotation into the OR orientation
51: Rotation into the x-track along the anti-ang momentum
52: Rotation into the x-track along ang momentum
53: Rotation into the orbit lower orientation
54: Rotation into alt. OR w/ CPR away from Sun
55 - 59: Not planned for operational use

Control Frame 3, Two thruster open-loop
60: Rotation into the OR orientation
61: Rotation into the x-track along the anti-ang momentum
62: Rotation into the x-track along ang momentum
63: Rotation into the orbit lower orientation
64: Rotation into alt. OR w/ CPR away from Sun
65 - 69: Not planned for operational use

Control Frame 4, Four thruster open-loop
70: Rotation into the OR orientation
71: Rotation into the x-track along the anti-ang momentum
72: Rotation into the x-track along ang momentum
73: Rotation into the orbit lower orientation
74: Rotation into alt. OR w/ CPR away from Sun
75 - 80: Not planned for operational use

Control Frame 5
81: Body into the x-track along the anti-ang momentum 82 - 1023: Not planned for operational use

(15) Cloud Layer

Name in file: Cloudlayer
Source: 2B-CLDCLASS-LIDAR 000
Field type (in file): INT(1)
Field type (in algorithm): INT(1)
Dimensions: nray
Units: MB: 0.035

The total cloud layer by combining radar and lidar measurements

(16) Cloud Layer Base

Name in file: CloudLayerBase
Source: 2B-CLDCLASS-LIDAR 000
Field type (in file): REAL(4)
Field type (in algorithm): REAL(4)
Dimensions: ncloud,nray
Units: km

Combined cloud base height

(17) Layer Base Flag

Name in file: LayerBaseFlag
Source: 2B-CLDCLASS-LIDAR 000
Field type (in file): INT(1)
Field type (in algorithm): INT(1)
Dimensions: ncloud,nray
Units: MB: 0.173

For the base 1 for radar and 2 for lidar when both lidar and radar detected layer. When only lidar detected a cloud layer, such as supercooled water cloud, we assign 3 for it
(18) Cloud Layer Top

Name in file: CloudLayerTop
Source: 2B-CLDCLASS-LIDAR 000
Field type (in file): REAL(4)
Field type (in algorithm): REAL(4)
Dimensions: ncloud,nray
Units: km
Range: 0 to 20
Missing value: -99
Missing value operator: ==
Factor: 1
Offset: 0
MB: 0.694

Combined cloud top height

(19) Layer top Flag

Name in file: LayerTopFlag
Source: 2B-CLDCLASS-LIDAR 000
Field type (in file): INT(1)
Field type (in algorithm): INT(1)
Dimensions: ncloud,nray
Units:
Range: 1 to 3
Missing value: -9
Missing value operator: ==
Factor: 1
Offset: 0
MB: 0.173

For the top 1 for radar and 2 for lidar when both lidar and radar detected layer. When only lidar detected a cloud layer, such as supercooled water cloud, we assign 3 for it

(20) Cloud Fraction

Name in file: CloudFraction
Source: 2B-CLDCLASS-LIDAR 000
Field type (in file): REAL(4)
Field type (in algorithm): REAL(4)
Dimensions: ncloud,nray
Units:
Range: 0 to 1
Missing value: -99
Missing value operator: ==
Factor: 1
Offset: 0
MB: 0.694

Cloud fraction within CloudSat foot print determined from CALIPSO lidar measurements.

(21) Cloud Phase

Name in file: CloudPhase
Source: 2B-CLDCLASS-LIDAR 000
Field type (in file): INT(1)
Field type (in algorithm): INT(1)
Dimensions: ncloud,nray
Units:
Range: 1 to 3
Missing value: -9
Missing value operator: ==
Factor: 1
Offset: 0
MB: 0.173

Cloud phase identified by using CALIPSO feature, temperature, and radar reflectivity
1-ice, 2 mixed, 3-water
(22) Cloud Phase Confidence Level

Name in file: CloudPhaseConfidenceLevel
Range: 0 to 10
Source: 2B-CLDCLASS-LIDAR 000
Missing value: -9
Field type (in file): INT(1)
Missing value operator: ==
Field type (in algorithm): INT(1)
Factor: 1
Dimensions: ncloud, nray
Offset: 0
Units:
MB: 0.173

Confidence level assigned to the cloud phase for each layer. It has a value ranging from 0 to 10. 10 indicates the highest confidence level. If confidence level is below 5, use the cloud phase with a caution.

(23) Cloud Layer Type

Name in file: CloudLayerType
Range: 0 to 8
Source: 2B-CLDCLASS-LIDAR 000
Missing value: -9
Field type (in file): INT(1)
Missing value operator: ==
Field type (in algorithm): INT(1)
Factor: 1
Dimensions: ncloud, nray
Offset: 0
Units:
MB: 0.173

Cloud type for each layer.

0 = Not determined
1 = Cirrus
2 = Altostratus
3 = Altocumulus
4 = Stratus
5 = Stratocumulus
6 = Cumulus
7 = Nimbostratus
8 = Deep convection
(24) Cloud Type Quality
Name in file: CloudTypeQuality Range: 0 to 1
Source: 2B-CLDCLASS-LIDAR 000 Missing value: -99
Field type (in file): REAL(4) Missing value operator: ==
Field type (in algorithm): REAL(4) Factor: 1
Dimensions: ncloud,nray Offset: 0
Units: MB: 0.694

Cloud Type Quality decided based on fuzzy-logic classification.

(25) Precipitation Flag
Name in file: PrecipitationFlag Range: -1 to 3
Source: 2B-CLDCLASS-LIDAR 000 Missing value: -9
Field type (in file): INT(1) Missing value operator: ==
Field type (in algorithm): INT(1) Factor: 1
Dimensions: ncloud,nray Offset: 0
Units: MB: 0.173

Precipitation flag indicate whether the cloud layer produces precipitation.
Precipitation flag has the following values:

-1 = not determined
0 = no precipitation
1 = liquid precipitation
2 = solid precipitation
3 = possible drizzle (?)

(26) The logical path of phase determination
Name in file: Phase_log Range: 0 to 3
Source: 2B-CLDCLASS-LIDAR 000 Missing value: -9
Field type (in file): INT(1) Missing value operator: ==
Field type (in algorithm): INT(1) Factor: 1
Dimensions: ncloud,nray Offset: 0
Units: MB: 0.173

Record the logical path of phase determination

(27) Water layer top
Name in file: Water_layer_top Range: -9 to 12
Source: 2B-CLDCLASS-LIDAR 000 Missing value: -9
Field type (in file): REAL(4) Missing value operator: ==
Field type (in algorithm): REAL(4) Factor: 1
Dimensions: ncloud,nray Offset: 0
Units: km MB: 0.694

This provides water layer top height in mixed-phase and water clouds. This is mainly to indicate the location of possible water layer in mixed-phase clouds.