CloudSat Project

A NASA Earth System Science Pathfinder Mission

CloudSat ECMWF-AUX Auxillary Data Product Process Description and Interface Control Document

Product Version: P_R05 Document Revision: 0 Date: 9 February 2017

Questions concerning the document and proposed changes shall be addressed to

Heather Cronk heather.cronk@colostate.edu (970) 491-8575

or

Philip Partain <u>philip.partain@colostate.edu</u> (970) 491-7835

Document Revision History

Date	Revision	Description	Section(s) Affected
February 2017	0	Initial Release	All

Table of Contents

1 Introduction	
2 Description of the Interpolation Process	4
3 Algorithm Inputs	5
3.1 1B-CPR Specifications	6
3.2 AN-ECMWF Specifications	7
4 Data Product Output Specifications	10
5 Caveats for Users	
6 Changes Since Algorithm Version P_R04	15
7 Acronym List	15

1 Introduction

The ECMWF-AUX data set is an intermediate product that contains the set of ancillary ECMWF atmospheric state variable data interpolated to each CloudSat cloud profiling radar (CPR) bin. These data are required for input to the LIDAR-AUX, 2B-GEOPROF, 2B-CLDCLASS, 2B-CLDCLASS-LIDAR, 2B-CWC-RO, 2B-CWC-RVOD, 2B-TAU, 2B-FLXHR, 2B-FLXHR-LIDAR, 2C-PRECIP-COLUMN, 2C-RAIN-PROFILE, 2C-SNOW-PROFILE, and 2C-ICE algorithms. The ECMWF-AUX product is created using a spatial (vertical and horizontal) and temporal interpolation scheme. The input data are obtained from the AN-ECMWF dataset provided by the European Center for Medium-Range Weather Forecasts. This document describes the interpolation scheme and the format of the ECMWF-AUX product.

2 Description of the Interpolation Process

The AN-ECMWF dataset provided by the European Center for Medium-Range Weather Forecasts contains 3-hourly forecast atmospheric state variable data on a half-degree Cartesian latitude and longitude grid. Operating one CloudSat ray at a time, using geolocation data from the CloudSat 1B-CPR product as the reference, the interpolation algorithm first finds the four bounding AN-ECMWF grid points around the CloudSat ray. For three-dimensional atmospheric state variables, the height of each 1B-CPR radar bin is used to find the two adjacent AN-ECMWF vertical levels and a linear interpolation is performed to get a single data value for the given radar bin height at each of the bounding grid points. Then, a bilinear interpolation is used on the resulting four values to calculate a single value of each data field at the location of the CPR ray at each bin height. Note that for two-dimensional variables, the bilinear interpolation is performed only once at the surface. This procedure is replicated for each of the two forecast times that bound the profile time of the CPR ray. Finally, a temporal linear interpolation is performed on the values obtained at each forecast time, resulting in a single spatially and temporally interpolated value for each CPR ray location and radar bin height. A visual depiction of this procedure is shown in Figure 1.

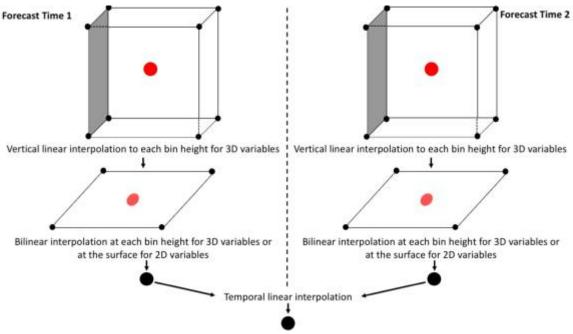


Figure 1. Interpolation procedure to calculate a single spatially and temporally interpolated AN-ECMWF data value for each CloudSat CPR ray and radar bin height.

When a CloudSat bin occurs below the lowest vertical bin of one or more of the surrounding AN-ECMWF grid points, the AN-ECMWF data at those grid points are extrapolated to the level of the CloudSat bin with a data field-dependent methodology. Ozone, wind data, and specific humidity are kept constant at their lowest ECMWF bin value, temperature is increased at a lapse rate of 6.5 K/km, and pressure is increased using the hypsometric equation.

3 Algorithm Inputs

Input data for the ECMWF-AUX algorithm includes CloudSat 1B-CPR and AN-ECMWF data sets. Each 1B-CPR data file contains data for one orbit of the CloudSat spacecraft. The AN-ECMWF data arrives via ftp at the DPC and is stored in GRIB format. The files contain the atmospheric state variable data on a half-degree Cartesian grid covering the globe for three hour forecast times.

3.1 1B-CPR Specifications

Fields available in the 1B-CPR P_R05 data set used by this algorithm include

(1) Seconds since the start of the granule.

Name in file: Profile_time Source: 1B-CPR P_R05 Field type (in file): REAL(4) Field type (in algorithm): REAL(4) Dimensions: nray Units: seconds Range: 0 to 6000 Missing value: N/A Missing value operator: N/A Factor: 1 Offset: 0

Seconds since the start of the granule for each profile. The first profile is 0.

(2) UTC seconds since 00:00 Z of the first profile.

Name in file: UTC_startRange: 0 to 86400Source: 1B-CPR P_R05Missing value: N/AField type (in file): REAL(4)Missing value operator: N/AField type (in algorithm): REAL(4)Factor: 1Dimensions: <scalar>Offset: 0Units: seconds

The UTC seconds since 00:00 Z of the first profile in the data file.

(3) Spacecraft Latitude

Name in file: Latitude Source: 1B-CPR P_R05 Field type (in file): REAL(4) Field type (in algorithm): REAL(4) Dimensions: nray Units: degrees Range: -90 to 90 Missing value: -999 Missing value operator: == Factor: 1 Offset: 0

Spacecraft Geodetic Latitude.

(4) Spacecraft Longitude

Name in file: Longitude Source: 1B-CPR P_R05 Field type (in file): REAL(4) Field type (in algorithm): REAL(4) Dimensions: nray Units: degrees Range: -180 to 180 Missing value: -999 Missing value operator: == Factor: 1 Offset: 0

Spacecraft geodetic longitude.

(5) Ray status range bin size

Name in file: RayHeader_RangeBinSizeRange: 239.8 to 239.8Source: 1B-CPR P_R05Missing value: -9999Field type (in file): REAL(4)Missing value operator: ==Field type (in algorithm): REAL(4)Factor: 1Dimensions: <scalar>Offset: 0Units: metersValue operator: ==

Spacing between samples in range in meters.

(6) Digital Elevation Map

Name in file: DEM_elevation Source: 1B-CPR P_R05 Field type (in file): INT(2) Field type (in algorithm): INT(2) Dimensions: nray Units: meters

Range: -9999 to 8850 Missing value: 9999 Missing value operator: == Factor: 1 Offset: 0

Elevation in meters above Mean Sea Level. A value of -9999 indicates ocean. A value of 9999 indicates an error in calculation of the elevation.

3.2 AN-ECMWF Specifications

The AN-ECMWF data set provided by ECMWF is derived from the GOPER highresolution forecast (atmosphere) model. The GRIB format files contain the following fields for creation of the ECMWF-AUX product and use by the Level 2 algorithms:

 (1) Temperature Name in file: Temperature Source: AN-ECMWF Field type (in file): REAL(4) Field type (in algorithm): REAL(4) Dimensions: nlon,nlat,nlev Units: K 	Missing value: N/A Missing value operator: N/A Factor: 1 Offset: 0
 (2) Specific humidity Name in file: Specific humidity Source: AN-ECMWF Field type (in file): REAL(4) Field type (in algorithm): REAL(4) Dimensions: nlon,nlat,nlev Units: kg/kg 	Missing value: N/A Missing value operator: N/A Factor: 1 Offset: 0

Name in file: Ozone mass mixing ratio

Source: AN-ECMWF Field type (in file): REAL(4) Field type (in algorithm): REAL(4) Dimensions: nlon,nlat,nlev Units: kg/kg

(3) Ozone mass mixing ratio

Missing value: N/A Missing value operator: N/A Factor: 1 Offset: 0

(4) Surface pressure Name in file: Surface pressure

Source: AN-ECMWF Field type (in file): REAL(4) Field type (in algorithm): REAL(4) Dimensions: nlon,nlat Units: Pa

Missing value: N/A Missing value operator: N/A Factor: 1 Offset: 0

(5) Skin temperature

Name in file: Skin temperature Source: AN-ECMWF Field type (in file): REAL(4) Field type (in algorithm): REAL(4) Dimensions: nlon,nlat Units: K

(6) Two-meter temperature

Name in file: 2 metre temperature Source: AN-ECMWF Field type (in file): REAL(4) Field type (in algorithm): REAL(4) Dimensions: nlon,nlat Units: K

(7) U component of wind

Name in file: U component of wind Source: AN-ECMWF Field type (in file): REAL(4) Field type (in algorithm): REAL(4) Dimensions: nlon,nlat,nlev Units: m/s Missing value: N/A Missing value operator: N/A Factor: 1 Offset: 0

Missing value: N/A Missing value operator: N/A Factor: 1 Offset: 0

Missing value: N/A Missing value operator: N/A Factor: 1 Offset: 0

(8) V component of wind

Name in file: V component of wind Source: AN-ECMWF Field type (in file): REAL(4) Field type (in algorithm): REAL(4) Dimensions: nlon,nlat,nlev Units: m/s

Missing value: N/A Missing value operator: N/A Factor: 1 Offset: 0

(9) Sea surface temperature Name in file: Sea surface temperature Source: AN-ECMWF

Field type (in file): REAL(4) **Field type (in algorithm):** REAL(4) **Dimensions:** nlon,nlat **Units:** K Missing value: N/A Missing value operator: N/A Factor: 1 Offset: 0

(10) Ten-meter U component of wind

Name in file: 10 metre U wind component Source: AN-ECMWF Field type (in file): REAL(4) Field type (in algorithm): REAL(4) Dimensions: nlon,nlat Units: m/s

Missing value: N/A Missing value operator: N/A Factor: 1 Offset: 0

(11) Ten-meter V component of wind Name in file: 10 metre V wind component Source: AN-ECMWF
Field type (in file): REAL(4)
Field type (in algorithm): REAL(4)
Dimensions: nlon,nlat
Units: m/s

Missing value: N/A Missing value operator: N/A Factor: 1 Offset: 0

The three-dimensional pressure data are constructed for each model level using Equation 1.

$$p_{k} = \frac{\left(A_{k-\frac{1}{2}} + B_{k-\frac{1}{2}} p_{sfc}\right) + \left(A_{k+\frac{1}{2}} + B_{k+\frac{1}{2}} p_{sfc}\right)}{2} \tag{1}$$

where k is the model level, $A_{k\pm\frac{1}{2}}$ and $B_{k\pm\frac{1}{2}}$ are constants stored in the GRIB header that define the vertical coordinate of the "half levels" above and below each model level, and p_{sfc} is the surface pressure.

4 Data Product Output Specifications

Each HDF-EOS 4 product file is built for the orbit specified by the input 1B-CPR data. Within each file, the Geolocation Fields contain the CloudSat ray geolocation, time, and surface elevation from the 1B-CPR file along with the idealized height of the ECMWF data bins. The two-dimensional Data Fields contain top-down profiles of the ECMWF atmospheric state variables for each CPR ray and the one-dimensional Data Fields similarly contain the state variables for the surface. The specifications for the ECMWF-AUX P_R05 file contents are as follows:

(1) Seconds since the start of the granule.	
Name in file: Profile_time	Range: 0 to 6000
Source: 1B-CPR P_R05	Missing value: N/A
Field type (in file): REAL(4)	Missing value operator: N/A
Field type (in algorithm): REAL(4)	Factor: 1
Dimensions: nray	Offset: 0
Units: seconds	

Seconds since the start of the granule for each profile. The first profile is 0.

(2) UTC seconds since 00:00 Z of the first	t profile
Name in file: UTC_start	Range: 0 to 86400
Source: 1B-CPR P_R05	Missing value: N/A
Field type (in file): REAL(4)	Missing value operator: N/A
Field type (in algorithm): REAL(4)	Factor: 1
Dimensions: <scalar></scalar>	Offset: 0
Units: seconds	

The UTC seconds since 00:00 Z of the first profile in the data file.

(3) TAI time for the first profile.	
Name in file: TAI_start	Range: 0 to 6e+008
Source: 1B-CPR P_R05	Missing value: N/A
Field type (in file): REAL(8)	Missing value operator: N/A
Field type (in algorithm): REAL(8)	Factor: 1
Dimensions: <scalar></scalar>	Offset: 0
Units: seconds	

The TAI timestamp for the first profile in the data file. TAI is International Atomic Time: seconds since 00:00:00 Jan 1 1993.

 (4) Spacecraft Latitude Name in file: Latitude Source: 1B-CPR P_R05 Field type (in file): REAL(4) Field type (in algorithm): REAL(4) Dimensions: nray Units: degrees 	Range: -90 to 90 Missing value: -999 Missing value operator: == Factor: 1 Offset: 0
Spacecraft geodetic latitude.	
 (5) Spacecraft Longitude Name in file: Longitude Source: 1B-CPR P_R05 Field type (in file): REAL(4) Field type (in algorithm): REAL(4) Dimensions: nray Units: degrees 	Range: -180 to 180 Missing value: -999 Missing value operator: == Factor: 1 Offset: 0
Spacecraft geodetic longitude.	
 (6) Height of the ECMWF data bins Name in file: EC_height Source: ECMWF-AUX P_R05 Field type (in file): INT(2) Field type (in algorithm): INT(2) Dimensions: nbin Units: m 	Range: -5000 to 30000 Missing value: -9999 Missing value operator: == Factor: 1 Offset: 0
Idealized height of the ECMWF data bi uses the same height information.	ns where bin 105 is at 0 m MSL. Each profile
(8) Digital Elevation Map Name in file: DEM_elevation Source: 1B-CPR P_R05	Range: -9999 to 8850 Missing value: 9999

Name in file: DEM_elevationRange: -9999 to 8850Source: 1B-CPR P_R05Missing value: 9999Field type (in file): INT(2)Missing value operator: ==Field type (in algorithm): INT(2)Factor: 1Dimensions: nrayOffset: 0Units: mOffset: 0

Elevation in meters above Mean Sea Level. A value of -9999 indicates ocean. A value of 9999 indicates an error in calculation of the elevation.

(9) ECMWF data extrapolation flag

Name in file: Extrapolation_flag Source: ECMWF-AUX P_R05 Field type (in file): INT(1) Field type (in algorithm): INT(1) Dimensions: nbin,nray Units: N/A Range: N/A Missing value: N/A Missing value operator: N/A Factor: 1 Offset: 0

The extrapolation flag is a bit field that indicates areas where ECMWF data are extrapolated to fill in CPR bins that occur below the lowest ECMWF layers between grid points.

Bit 0: CPR bin below ground Bit 1: Data from Northeast grid point missing Bit 2: Data from Northwest grid point missing Bit 3: Data from Southwest grid point missing Bit 4: Data from Southeast grid point missing

(10) Atmospheric pressure

Name in file: Pressure Source: ECMWF-AUX P_R05 Field type (in file): REAL(4) Field type (in algorithm): REAL(4) Dimensions: nbin,nray Units: Pa

Missing value: -999 Missing value operator: == Factor: 1 Offset: 0

(11) Temperature

Name in file: Temperature Source: ECMWF-AUX P_R05 Field type (in file): REAL(4) Field type (in algorithm): REAL(4) Dimensions: nbin,nray Units: K

Missing value: -999 Missing value operator: == Factor: 1 Offset: 0

(12) Specific humidity

Name in file: Specific_humidity Source: ECMWF-AUX P_R05 Field type (in file): REAL(4) Field type (in algorithm): REAL(4) Dimensions: nbin,nray Units: kg/kg

Missing value: -999 Missing value operator: == Factor: 1 Offset: 0

(17) U component of wind Name in file: U velocity Source: ECMWF-AUX P_R05 **Field type (in file):** REAL(4) **Field type (in algorithm):** REAL(4) **Dimensions:** nbin,nray

(16) Two-meter temperature Name in file: Temperature_2m Source: ECMWF-AUX P R05

(15) Skin temperature Name in file: Skin temperature Source: ECMWF-AUX P R05 **Field type (in file):** REAL(4) **Field type (in algorithm):** REAL(4) **Dimensions:** nray Units: K

Missing value: -999

Missing value: -999 Missing value operator: == Factor: 1 Offset: 0

Missing value: -999 Missing value operator: == Factor: 1 Offset: 0

Missing value: -999 Missing value operator: == Factor: 1 Offset: 0

Missing value operator: == Factor: 1 Offset: 0

Field type (in file): REAL(4)

Dimensions: nray

Units: K

Units: m/s

Field type (in algorithm): REAL(4)

(14) Surface pressure

Source: ECMWF-AUX P_R05 **Field type (in file):** REAL(4) Field type (in algorithm): REAL(4) **Dimensions:** nray Units: Pa

(13) Ozone mass mixing ratio Name in file: Ozone

Source: ECMWF-AUX P R05 **Field type (in file):** REAL(4) **Field type (in algorithm):** REAL(4) **Dimensions:** nbin,nray **Units:** kg/kg

Name in file: Surface pressure

13

Missing value: -999 Missing value operator: == Factor: 1 Offset: 0

(18) V component of wind

Name in file: V_velocity Source: ECMWF-AUX P_R05 Field type (in file): REAL(4) Field type (in algorithm): REAL(4) Dimensions: nbin,nray Units: m/s

Missing value: -999 Missing value operator: == Factor: 1 Offset: 0

(19) Sea surface temperature Name in file: Sea_surface_temperature Source: ECMWF-AUX P_R05 Field type (in file): REAL(4) Field type (in algorithm): REAL(4) Dimensions: nray Units: K

Missing value: -999 Missing value operator: == Factor: 1 Offset: 0

(20) Ten-meter U component of wind Name in file: U10_velocity Source: ECMWF-AUX P_R05 Field type (in file): REAL(4) Field type (in algorithm): REAL(4) Dimensions: nray Units: m/s

Missing value: -999 Missing value operator: == Factor: 1 Offset: 0

(21) Ten-meter V component of wind Name in file: V10_velocity Source: ECMWF-AUX P_R05 Field type (in file): REAL(4) Field type (in algorithm): REAL(4) Dimensions: nray Units: m/s

Missing value: -999 Missing value operator: == Factor: 1 Offset: 0

5 Caveats for Users

The ECMWF-AUX team has identified the following caveats that users should be aware of:

• The sea surface temperature (SST) field is not suitable for scientific analysis near coastlines. Non-existent ECMWF SST values on land prevent spatial bilinear interpolation near the coast and therefore the ECMWF-AUX product contains missing values (-999.0) in this area.

6 Changes Since Algorithm Version P_R04

- The source code was re-written in Python for improved accessibility and flexibility.
- The calculation of the ECMWF pressure profile was corrected which will affect the vertical profile of every variable when compared to P_R04.
- Additional AN-ECMWF data fields were added to the ECMWF-AUX product, including
 - \circ U and V wind components
 - Sea surface temperature
 - 10 meter U and V wind components

See Section 3.2 and Section 4 for more details.

7 Acronym List

AGL	Above Ground Level
CPR	Cloud Profiling Radar
DPC	Data Processing Center
ECMWF	European Center for Medium-Range Weather Forecasts
EOS	Earth Observing System
GRIB	Gridded Binary Data Format
HDF	Hierarchical Data Format
MSL	Mean Sea Level