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1 Introduction 

 

A great strength of microwave radar measurements of clouds and precipitation is the 

ability to retrieve quantitative content data from the radar reflectivity factor Z.  This is 

made possible by devising algorithms based on empirical relationships between Z and 

various microphysical parameters, such as ice water content IWC or rainfall rate.  

However, because of the diversity of microphysical conditions found in the atmosphere, 

algorithms need to be applied only to those conditions for which they are considered 

valid.  In other words, it is first necessary to identify the target and then select an 

appropriate algorithm.  This is true to implement sophisticated multi-senor retrieval 

algorithms. The algorithm selection process depends on such basic factors as cloud phase, 

and also the hydrometeor density, shape, and size distribution.  For example, although 

cirrus, altostratus, and the upper portions of cumulonimbus clouds are all predominantly 

ice phase clouds, it is not possible to apply a single algorithm for retrieving IWC in these 

targets: cirrus generally contain only single ice crystals, altostratus likely contain low-

density ice crystal aggregates at the warmer temperatures, and cumulonimbus may 

combine ice crystals, snowflakes, rimed particles, graupel, and even hailstones. Due to 

the different radiative forcings of various cloud types (Hartmann et al. 1992; Chen et al. 

2000), classifying clouds into categories based on type is also an important task for cloud 

remote sensing and global cloud climatology studies. 

 

As the first step in converting the vertical profiles of Z from CloudSat into meaningful 

microphysical data quantities, we are developing an algorithm for identifying cloud type 

and precipitation.  However, measurements of cloud radar alone cannot provide 

necessary information for cloud scenario classification. The formation fly (A-train) of 

Aqua, CloudSat and CALIPSO provides other cloud information from lidar and passive 

radiometer measurements. As described here, we identify eight basic cloud types that are 

recognized by surface observers internationally by combining information available 

mainly from the CloudSat and CALIPSO satellites.   

 

a) Different detection sensitivities of lidar and cloud radar 

 

The main difference between lidar and cloud radar is their working wavelengths: optical 

wavelength for lidar and milimeter wavelength for cloud radar. Table 1 provides the 

specifications of CloudSat Cloud Profiling Radar (CPR) and CALIPSO lidar (CALIOP). 

The different wavelengths result in different sensitivities of lidar and radar for cloud 

particles. Lidar is sensitive enough to detect clouds and aerosols in the troposphere, but 

its short wavelength results in strong attenuation from them and limits its ability to 

penetrate optically thick clouds to detect any thing beyond them. Lidar, especially space 

based, is more suitable to profile high and mid-level clouds due to their lower optical 

thicknesses than low-level clouds.  Cloud detection with milimeter cloud radar (k-band 
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and w-band) has some distinct advantages compared to lidar. For eample, 8-mm and 3-

mm cloud radars can penetrate optically thick clouds to detect multi-layer cloud systems.  

However, its long wavelength limits its capability to detect midlevel supercooled water 

clouds with relatively small water droplets or cold ice clouds with low concentrations of 

small ice crystals. However, for mixed phase clouds or water clouds with drizzle, cloud 

radar signals are dominated by the backscatter of ice particles or drizzle-size drops.  

 

Table 1: The specifications of CPR and CALIOP 

 CALIOP CPR 

 0.532/1.06 m 3200 m 

Pulse Width ~10 ns 3.3/33.3 sec 

PRF ~20 Hz 4300/800Hz 

Pt() 105-106 W (peak) ~270 W (avg) 

Scatter of Cloud particles 
Mie scatter  Rayleigh/Mie scatter 

Backscattering of cloud particles  D2  D6/   D2 

Attenuation of Clouds Strong Weak 

 

Their different sensitivities are illustrated with following examples. Figure 1 presents 

examples from ground-based lidar and radar Measurements. The left side of Fig. 1 is a 

midlatitude case, and shows that cloud radar (top) misses to detect supercooled water 

clouds, which are optically thick enough to attenuate lidar to detect high cirrus clouds. 

Another interesting point is that cloud radar detects strong signal from virga because it is 

much sensitive to larger particles than lidar. The right side of Fig. 1 presents a case from 

the Arctic, and different cloud images are seen from lidar and radar measurements for 

Figure 1. Co-located ground-based lidar and radar measurements. Left: Cloud radar 

Ze (top) and lidar return (bottom) for middle-level and high cloud layers observed at 

the SGP site. Right: the time-height display of lidar return (top), mean Doppler 

velocity (middle) and Ze profiles (bottom) for mixed-phase and ice cloud layers 

observed at the NSA site.  
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precipitating altocumulus clouds. Lidar measurements show strong signals for 

supercooled water-dominated source clouds whereas radar measurements show strong 

signals for ice virga because of their different sensitivities to cloud particle sizes. 

 

Figure 2 show a collocated CloudSat CALIPSO example. It is clear that lidar can detect 

optically thin cirrus clouds in the tropics that are missed by the radar, and lidar signals are 

strongly attenuated by the optically thick clouds. On the other hand, radar shows better 

capabilities to profile optically think clouds and moderate precipitation.  But radar has 

some difficulties to detect stratocumulus without drizzle.  

 
Figure 2. Collocated CloudSat (top) and CALIPSO lidar (532 nm) lidar measurements 

over a half nighttime orbit on 5 October 2006.   

 

b) Different vertical and horizontal resolutions of CPR and CALIOP 

 

The CPR and CALIOP profile cloud 2-D structure at different horizontal and vertical 

resolutions as given in Table 2.  For clouds below 8.2 km, a CPR footprint contains ~ 12 

CALIOP footprints, thus CALIOP measurements are able to provide fine cloud structure 

within a CPR footprint. This fine structure is important to characterize cumulus and 

stratocumulus clouds.  The CALIOP also has better vertical resolution than that of CPR, 

which is important for geometrically thin cloud layer detection, such as altocumulus. 

 

 

Table 2:  The horizontal and vertical resolutions of CPR and CALIOP 

 

Altitude             Horizontal                        Vertical  

Region (km)                (km)                                  (meters)  

                        CPR     CALIOP     CPR  CALIOP  

-2.0 to -0.5                1/3                    300 

-0.5 to 8.2       1.4x1.8        1/3       500/240          30  

8.2 to 20.2       1.4x1.8          1   500/240          60  
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20.2 to 25.0        1.4x1.8         5/3   500/240          180  

25.0 to 30.1                 5/3               180  

30.1 to 40.0                  5               300  

 

In summary, combining lidar and radar measurements provide better cloud detection and 

characterization because of their unique complementary capabilities.  Now combining 

radar and lidar measurements are widely used for cloud studies from cloud macrophysical 

and microphysical properties. CloudSat and CALIPSO satellites will provide us first 

opportunity to study cloud from space by combining lidar and radar measurements.  In 

general, cloud optical thickness decreases with altitude (as temperature decrease), thus 

lidar has more chances to penetrate high and midlevel clouds than low-level clouds. 

Therefore, there are more advantages to combine lidar and radar measurements from 

space than from ground. In this document, we discuss how to combine CPR and CALIOP 

measurements for the cloud phase determination and cloud scenario classification. 

Combining CPR and CALIOP measurements for ice cloud microphysical property 

retrievals is provided by the 2C-ICE product (Deng et al. 2010). 

 

2 Algorithm Theoretical Basis 

Algorithms based on different cloud spectral, textural, and physical features have been 

developed for cloud classification from satellites (Welch et al. 1992; Tovinkere et al. 

1993; Bankert 1994; Luo et al. 1995; Rossow and Schiffer 1999). The International 

Satellite Cloud Climatology Project (ISCCP) (Rossow and Schiffer 1999) uses the 

combination of cloud top pressure and cloud optical depth to classify clouds into either 

cumulus (Cu), stratocumulus (Sc), stratus (St), altocumulus (Ac), altostratus (As), 

nimbostratus (Ns), cirrus, cirrostratus, or deep convective clouds. Table 3 shows the basic 

features of these different cloud types (WMO 1956; Parker 1988; Uddstrom and Gray 

1996; Moran et al. 1997). However, with more long-term ground-based remote sensing 

cloud studies underway, algorithms to classify cloud type using ground-based 

measurements were developed. Wang and Sassen (2001) developed an algorithm to 

classfy clouds by combining the measurements of ground-based multiple remote sensors. 

Duchon and O’Malley (1999) studied the possibility of classifying clouds according to 

ground- based solar flux measurements. Williams et al. (1995) developed an algorithm to 

classify precipitating clouds into either stratiform, mixed stratiform, convective, and deep 

or shallow convective clouds using 915-MHz wind profile data.  

 

In this document, we present a new algorithm for CloudSat to classify clouds into either 

St, Sc, Cu, Nb, Ac, As, deep convective, or high cloud by combining space-based active 

(CPR and CALIOP) and passive remote sensing (MODIS) data. The class of high cloud 

includes cirrus, cirrocumulus, and cirrostratus, and Cu cloud represents cumulus 

congestus and fair weather cumulus.  These types may be further classified into sub-types 

to refine IWC and LWC retrievals. 
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Table 3 Characteristic cloud features for the major cloud types derived from numerous 

studies (midlatitude). Our cloud type identification algorithm is based on many of these 

characteristics. Heights are above ground level. 

Cloud Class Cloud Features  

High Cloud Base  > 7.0 km 

Rain no 

Horiz. Dim. 1 to 103 km 

Vert. Dim. moderate 

LWP = 0. 

As Base 2.0-7.0 km 

Rain none 

Horiz. Dim. 103 km, homogeneous 

Vert. Dim. moderate 

LWP ~ 0, dominated by ice 

Ac Base 2.0-7.0 km 

Rain virga possible 

Horiz. Dim. 103 km, inhomogeneous 

Vert. Dim. shallow or moderate 

LWP > 0 

St Base 0-2.0 km 

Rain none or slight 

Horiz. Dim. 102 km, homogeneous 

Vert. Dim. shallow 

LWP > 0. 

Sc Base 0.-2.0 km 

Rain drizzle or snow possible 

Horiz. Dim. 103 km, inhomogeneous 

Vert. Dim. shallow 

LWP > 0. 

Cu Base 0-3.0 km 

Rain drizzle or snow possible 

Horiz. Dim. 1 km or larger, isolated 

Vert. Dim. shallow or moderate 

LWP > 0. 

Nb Base 0-4.0 km 

Rain prolonged rain or snow 

Horiz. Dim. 50 -1000 km 

Vert. Dim. thick 
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LWP > 0. 

Deep convective clouds Base 0-3.0 km 

Rain intense shower of rain or hail possible 

Horiz. Dim. 10 km or large 

Vert. Dim. thick  

LWP > 0. 

a) Measurements used for cloud classification 

We classify clouds by using vertical and horizontal cloud properties, the presence or 

absence of precipitation, cloud temperature, and upward radiance from MODIS 

measurements. The CPR and CALIOP provide vertical cloud profiles and horizontal 

extent of clouds, which provide important information to differentiate cloud types. Figure 

3 displays CloudSat CPR and CALIPSO CALIOP measurements for close and open cell 

stratocumus, which clearly show different sensitivities of lidar and radar for cloud and 

precipitiation measurements. This figure also shows horizontal and vertical varibility for 

different types of clouds. 
 

a) 

 
b) 
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Figure 3: Examples of ‘3-D’ cloud measurements from  the  A-train satellites: a) close cell stratocumulus  

and b) open and clous cell stratocumulus. For each example, from top to bottom are CloudSat Ze, 

CALIPSO lidar attenuated backscattering, and MODIS true color image. 

 

In addition to active remote sensing data, MODIS radiance measurements from Aqua 

satellite can be incorporated into the algorithm. Cloud spectral, and textural features 

derived from radiance data are important supplementary information to cloud vertical and 

horizantal extents from active remote sensors. However, these MODIS measurements are 

mainly useful for single layer cloud system.  Combing active and passive remote sensing 

from space provides kind of three-dimensional cloud structure as showed in the Fig. 3.  

 

The CALIOP also provides lidar linear depolarization ratios () of clouds, which can be 

used for cloud phase discrimination in principle (Sassen 1991). However, the strong 

influence of multi-scattering on  for space-based lidar measurements limits the potential 

of using  directly. Combining , attenuated backscattering coefficient and Ze profiles 

provide better cloud phase discrimination. Section 4.5 will provide more details on the 

cloud phase identification by combining CloudSat and CALIPSO measurements. 

 

Table 4 lists important 2-D cloud structures and properties contributed by CPR and 

CALIOP measurements for different cloud types. It is clear that combined CPR and 

CALIOP measurements provide improved cloud macrophysical properties. 

 

Table 4: Contributions of CPR and CALIOP measurements on cloud 2-D Structure for different cloud 

types. 

 CPR CALIOP 

High clouds Boundaries Fine Boundaries 

Altostratus Boundaries, Max Ze Phase, Upper boundary 

Altocumulus ---- Phase, Boundaries 

Altocumulus + virga Boundaries, Max Ze Phase, Boundaries 

Cumulus Boundaries, Max Ze Fine horizontal structure 

Stratus and 

stratocumulus 

Boundaries, Max Ze Phase, Upper boundary 

Nimbostratus Boundaries, Max Ze Upper boundary 

Deep Convective Boundaries, Max Ze Upper boundary 

Multi-layer cloud 

system 

Boundaries, Max Ze for 

each layer 

Phase and boundaries of upper 

layer/layers 
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Cloud temperature (T) derived from ECMWF predictions is an important cloud property. 

Using our ground-based cloud classification results (Wang  and Sassen 2001), we derive 

the frequency distribution of different cloud types in maximum Ze  and T ( at maximum 

Ze height) space (see Fig. 4a and 4b). The features displayed in Fig. 4 are consistent with 

cloud physics and the microphysical properties of different cloud types.  

  
 Figure 4a: Frequency distribution of different types of clouds in the temperature and maximum Ze 

space. 
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Figure 4b: Frequency distribution of different types of clouds in the temperature and maximum Ze 

space. 

 

 

 



 

 

 

13 

 

 

b) Methodology 

 

Role-based classification methods, which assigns different threshold values to 

characteristic parameters, are simple and easy to use methods, but the results are sensitive 

to the selection of the thresholds. Instead of using Boolean logic, the proper use of fuzzy 

logic can improve the results of cloud classification (Penoloza and Welch 1996). The 

approach of using neural networks to classify cloud type in satellite imagery has shown 

recent success (Welch et al. 1992; Bankert 1994). The network is trained on selected 

spectral, textural, and physical features associated with expertly labeled samples. The 

trained network is subsequently applied to unknown cloud samples. However, these new 

classification techniques can not guarantee better performance, which depends on how 

properly designed the classifier is and the selection of features (Tovinkere et al. 1993). 

 

Combined rule-based and fuzzy logic classification approach is used in this algorithm. 

We use the following strategy to classify clouds. First, combined radar and lidar cloud 

mask results are used to find a cloud cluster according to their persistence in the 

horizontal and vertical directions. A minimum horizontal extent for a cluster is required, 

therefore, a cloud cluster permits horizontally broken, but vertically similar cloud fields. 

 

Once a cloud cluster is found, cloud height, temperature, and maximum Ze, as well as the 

occurrence of precipitation, are determined. Then the cluster mean properties as well as 

spatial inhomogeneties in terms of cloud top height, lidar and radar maximum signals are 

sent to a fuzzy classifier to classfy the cluster into one cloud type with an assigned 

confidence level. 

 

3 Algorithm Inputs 

 

3.1 CloudSat 

 

3.1.1 Cloud properties from 2B-GEOPROF and 2B-GEOPROF-lidar products 

CPR-Ze profiles and combined lidar and radar boundaries provide horizontal and vertical 

cloud structure and are main inputs for cloud scenario classification. Inputs from these 

two products are: Ze profile, radar cloud mask, geolocation, altitude of each radar bin, 

surface bin number, and cloud layer information. 
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3.2 Ancillary (Non-CloudSat) 

 

3.2.1 CALIOP 

 

3.2.1.1 Lidar level 1 attenuated backscattering coefficients 

In the Lidar-AUX product, CALIOP attenuated backscattering coefficients at different 

horizontal resolutions are averaged to the CloudSat horizontal resolution. But it keeps the 

data at the native CALIOP vertical resolutions for better cloud boundary and phase 

identifications.  

 

3.2.1.2 Lidar cloud mask at the CloudSat horizontal resolution 

This is provided by the Lidar-AUX product, which identifies clouds based on lidar 

attenuated backscattering coefficients at CloudSat horizontal and CALIPSO vertical 

resolutions. Cloud fractions within CloudSat footprints are also provided in this product 

by using fine horizontally resolved CALIPSO measurements.   

 

3.2.2 MODIS 

MODIS radiance data of channel 1, 2, 26, 29, 31, and 32 (Ackerman et al. 1998) could be 

used as supplementary information to CloudSat radar and CALIPSO lidar measurements 

for cloud scenario classification. Cloud variability orthogonal to the radar ground track 

will be explored with MODIS radiance data to improve cumulus-type cloud 

identification. But at this point, MODIS radiance data are not used in the algorithm due to 

the unavailability of MODIS data after CloudSat and CALIPSO leaving the A-train. 

 

Table 5: The MODIS bands used in the MODIS cloud mask algorithm 

Band Wavelength (µm)  

1 (250 m) 0.659 Clouds, shadow 

2 (250 m) 0.865 low clouds 

26 1.375 thin cirrus 

29 8.550 cloud 

31 11.030 cloud 

32 12.020 cloud 

 

3.2.3 ECMWF 

Temperature profiles are used. 

 

3.2.4 Coastline Map 

Land or ocean flag is used. 

 



 

 

 

15 

3.2.5 Topographical Map 

It provides surface altitudes above the sea level to estimate the heights of cloud above the 

surface.  

 

3.3 Input Variable Summary 

See the 2B-CLDCLASS-LIDAR Interface Control Document in the appendix A. 

3.4 Control and Calibration 

 

No control and calibration are necessary for this algorithm. 
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4 Algorithm Summary 

 

First algorithm performs clusting analysis to group individual cloud profiles in to a 

cluster, then calculate cluster features to classfy it as one of the standard cloud type.  

Figure 5 presents the general block structure of the classification algorithm. 

 

The General Structure of Cloud Type Classification

Inputs

CloudSat

CALIPSO

MODIS

Other

ancillary

data

Cloud

Feature

Generator

Horizontal 

extend

Precipitation

Cloud cover

Cloud 

homogeneity

Cloud 

Thickness

Ze

Phase

T

Height

Horizontal 

extend

Precipitation

Cloud cover

Cloud 

homogeneity

Cloud 

Thickness

Ze

Phase

T

Height

Cloud Features

Combined 

role-based 

and fuzzy 

logical-

based 

cloud type 

classifier

Deep 

Convective 

clouds

Ns

Cu

Sc

Sc

St

Ac

As

High cloud

Deep 

Convective 

clouds

Ns

Cu

Sc

Sc

St

Ac

As

High cloud

Outputs with 

confidence level

“Diamond dust”
 

Figure 5. The general function blocks of the classification algorithm. 

4.1 Cloud clustering analysis 

 

Cloud Cluster: One or multiple  similar cloud elements 

Cloud Element: A group of radar and/or lidar detected  and horizontally connected cloud 

cloud layers with a similar vertical extend.  Systemaic changes in cloud base or top 

height, cloud thickness, precipitation, or phase are used to separate horizontally 

connected cloud layers into different elements. 

 

Because of the strong variabilities of clouds, it is difficult to apply a classification 

algorithm directly to an individual radar profile.  Different types of clouds have different 

horizontal and vertical extents. The cloud clustering analysis provides cloud horizontal 

and vertical extent features. For some cloud types,  such as Cu and Sc, horizontal extent 

of a cloud element may be small. Therefore, it is necessary to allow breaks between cloud 

elements to group multiple similar cloud elements together for the classification.  A 
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CloudSat granule may be divided into a different number of cloud clusters varying with 

cloud types presented in the granule. 
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4.2 The flowchart of cloud scenario classification 

 

 

 

 

 

  

 

 

                           

 

 

                                                              

 

 

 

                           

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6: The algorithm flowchart for cloud scenario classification 

 

Start 

Cloud layer, phase, and precipitation analyses for 

the whole granule. 

Calculate properties (means of top and base heights and temperature; 

spatial variability of lidar and radar signals, etc.) for the cluster 

To find a cloud cluster End of a granule 

Write EOS-

HDF file and 

next granule 

Fuzzy logic Classifier 

  De-fuzzy to output cloud type 

and confidence level.  

Find a next cloud cluster 
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4.3 Classification Method 

 

A combination of rule based and fuzzy logical based classification is used in this 

algorithm to improve classification flexibility. The cloud phase determination is based on 

rule-based logics and the cloud type classification is mainly based on the fuzzy logics. 

The general steps to use fuzzy logics for classification are schematically illustrated as: 

 

 

 

 

 

 

 

 

 

 

A priori (expert) knowledge is needed to set the membership functions for the fuzzy sets. 

The membership functions of main fuzzy sets used in this algorithm are presented in Fig. 

7. To calculate the membership of given fuzzy variable, the mean property of the cloud 

cluster is used. Currently, we use radar surface returns to simply measure precipitation 

intensity and only consider land and ocean differences.   

 

Rules; Fuzzy Sets Knowledge  

 

Inputs Fuzzifier 1.1.1.1.1.1.1.1 P

r

o

c

e

s

s

  

1.1.1.1.1.1.1.2 L

o

g

i

c 

Defuzzifier Outputs 
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Figure 7: The membership functions for fuzzy variables of cloud top and base height and temperature, 

phase, cover, and thickness, and precipitation features. 

 

Table 6 presents two examples to show how fuzzy logical based classification works. 

Based on the inputs, we will have different memberships (between 0 and 1) for different 

fuzzy sets. For example with -53.0 C cloud base temperature, cold cloud base has a 

membership of 1 and moderate or warm cloud base has a membership of 0. The 
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membership for different cloud type can be between 0 and 1 too. For the first case, we 

have amembership 1 for high cloud, and 0 for the others. Therefore, we are confident 

about the output. The second case is more complicated as there are two cloud types (high 

and As) with non-zero memberships. In the de-fuzzy process, we output a cloud type 

(high), which has the highest membership, and confidence level given by the normalized 

membership. However, there is option to output both cloud types with different 

confidence levels. 

 

Table 6: Examples of fuzzy logical based classification 

 

 

Notes: 

Base_H, Base_T: cloud base height and temperature. 

Top_H, Top_T: cloud top height and temperature. 

dH: Cloud thickness. 

High_M, As_M, Ac_M, St_M, Sc_M, Cu_M, Ns_M, and Deep_M: memberships for  

high, As, Ac, St, Sc, Cu, Ns, and Deep clouds. 

 

 

To accommodate latitude dependent of tropopause height, we vary middle and high cloud 

definitions according to the latitude bands. The overlap between two variables (such as 

low cloud and middle cloud) provides the flexibility to hand errors in cloud base height 

and the freedom to use other parameters, such as cloud temperature (cold, moderate, and 

warm), precipitation intensity (drizzle, light, heavy), cloud thickness (thin, moderate, and 

thick), phase (ice, middle and water), to better define the outcomes with confidence 

Base_H        Top_H        dH              Base_T      Top_T     Cloud Fraction  Phase  
8.52818      10.1073      1.57921     -53.0121     -63.0221      1.00000      3.00000 
Base temperature : cold, moderate, warm        1.00000     0.000000     0.000000 
Cloud base height: Low, Mid, High       0.000000     0.000000      1.00000 
Cloud thickness: Thin, Moderate, Thick       0.000000      1.00000     0.000000 
Cloud cover: Scattered, Moderate, Overcast      0.000000     0.000000      1.00000 
Cloud horizontal extend : Isolated, Moderate, Extended       0.000000      1.00000     0.000000 
high_M,      As_M,          Ac_M,        St_M,       Sc_m,          Cu_M,        Ns_M,           Deep_M 
1.00000     0.000000     0.000000     0.000000     0.000000     0.000000     0.000000     0.000000         

Base_H        Top_H        dH              Base_T      Top_T     Cloud Fraction  Phase  
7.47600      8.26350     0.787620     -38.8858     -43.7634      1.00000      3.00000 
Base temperature : cold, moderate, warm       0.888580     0.111420     0.000000 
Cloud base height: Low, Mid, High       0.000000     0.262000     0.738000 
Cloud thickness: Thin, Moderate, Thick       0.589114     0.410886     0.000000 
Cloud cover: Scattered, Moderate, Overcast      0.000000     0.000000      1.00000 
Cloud horizontal extend : Isolated, Moderate, Extended       0.000000      1.00000     0.000000 
       high_M,      As_M,          Ac_M,        St_M,           Sc_m,          Cu_M,        Ns_M,           Deep_M 
     0.738000     0.262000     0.000000     0.000000     0.000000     0.000000     0.000000     0.00000   

Inputs 

Member-

ships of 

fuzzy sets 
 Outputs 
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levels. As an example, the Table 7 lists the main fuzzy roles used to define As and Ac 

clouds. 

 

 

Table 7: The fuzzy roles for As and Ac cloud classification 

Property As Ac 

Height and temperature 

(base and top) 

Middle base; low base and 

middle or high top 

Middle base; low base and 

middle top; warm or 

moderate cloud top 

temperature 

Phase  Ice or mixed-phase Mixed-phase or water 

Precipitation No precipitation or isolated 

drizzle 

No precipitation or isolated 

or drizzle 

Thickness Moderate or thick or thin 

ice 

Thin or moderate 

Horizontal extend Moderate or extend or mid-

level ice 

Isolated or moderated or 

extended mixed-phase 

Cloud cover Overcast or moderate mid-

level ice clouds 

Any 

 

 

4.4 Precipitation Identification 

 

Precipitation identification is an important step in the classification scheme. The current 

version algorithm, we use the same approach as the 2B-CLDCLASS product for the 

precipitation identification. But in the future version, we will use the precipitation flags in 

the CloudSat precipitation product.   

 

4.5 Cloud Phase Identification 

 

Although clouds can contain only water droplets when > 0C and only ice crystals when 

< –40 C, between 0 and –40 C, clouds can be of ice, water, or mixed phase composition 

(Rauber and Tokay 1991; Cober et al. 2001). Cloud properties associated with different 

cloud phases within this temperature range are complicated and not well known. To 

identify cloud phase, especially globally, is important to better understand cloud’s role in 

climate change. Knowing cloud phase also allow for a better cloud type identification. 

For example, altostratus clouds are mainly ice clouds associated with synaptic scale 

motions. Due to small scale dynamics, local and embedded mixed-phase clouds can exist.  
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On the other hand, altocumulus clouds often exist as water or supercooled water with ice 

virga (mixed-phase). As documented by Zhang et al. (2010) mixed-phase altocumulus 

clouds are widely distributed. 

 

CALIPSO level-2 scene identification provides water or ice cloud information based on 

the CALIOP measurements (Hu et al. 2009). However, there are few limitations to 

identify mixed-phase cloud correctly from space-based lidar measurements because of 

the strong impacts of multiple scatter on lidar depolarization measurements and the 

limited penetration of lidar for optically thick clouds. With coincident CloudSat and 

CALIPSO measurements, we developed a reliable approach to determine cloud layer 

phase (water, ice, and mixed-phase) and the location of water layer top to avoid the main 

limitations of the lidar-only based approach. 

 

The approach is based on the fundamental microphysical and optical property differences 

between ice particle and water droplets. First, ice particles are much large than water 

droplets. The large ice particles have terminal falling velocity about 1 m/s while small 

droplets have negligible falling velocity. This different vertical falling speeds affect cloud 

vertical distributions.  Large particles are generally located near the bottom of ice clouds, 

while large water droplets are normally found near the top of water clouds. In the case of 

stratiform mixed-phase, ice particles grow quickly in the mixed-phase layer to form ice 

virga or precipitation below the mixed-phase layer.  Second, there are orders of 

magnitude differences of cloud droplet and ice crystal number concentrations.  Ice crystal 

number concentrations generally increase with temperature decrease and vary from less 

than 1/L to as high as 100 /L within the temperature range warmer than homogeneous ice 

nucleation.  Water droplet concentrations range from as low as 10/cm3 over clear marine 

boundary layer to as high as 500 /cm3 over polluted continental boundary layer.  

 

These microphysical property differences between water and ice phases result in large 

differences in their radiative properties, therefore, their different contributions to 

CALIPSO lidar and CloudSat signals (Wang and Sassen 2001).  Due to weak attenuation 

of ice clouds, lidar signals can penetrate ice cloud layer up to a few kilometers. On the 

other hand, lidar signals are often attenuated by water clouds in just a few hundred 

meters. Although cloud droplet concentrations are much higher than ice crystal 

concentrations, CloudSat CPR Ze in mixed-phase clouds are still dominated by ice 

particles because Ze is proportional to the sixth power of particle size under the Rayleigh 

scattering region. 

 

With these different sensitivities of CloudSat radar and CALIPSO lidar on ice crystals 

and water droplets, we can effectively determine the phase of a cloud layer.  First, by 

locating a strong signal increase (slope and magnitude) followed by a strong signal 
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decrease due to attenuation, we detect the location of possible water layer (Wang and 

Sassen 2001). The cloud number concentration estimated from combined CloudSat and 

CALIPSO measurements are also used to improve water layer identification. 

Horizontally orientated plates do produce strong signals like a water layer, but it can be 

separated from a water layer by its weak attenuation after the strong signal increase.   

 

With lidar identified water layer locations and the maximum radar signals in the layers, 

we can discriminate supercooled water layer with mixed-phase layer. A temperature 

dependent Ze threshold was developed to detect ice occurrence (see Fig. 8, Zhang et al. 

2010). If a cloud layer with top colder than -7 C and having supercooled water region 

and the layer maximum Ze larger than the threshold, the cloud layer is regarded as a 

mixed-phase cloud layer. Otherwise, detected supercooled water layer is regarded as 

water phase.   

 

The cloud top and base temperatures are also used as the first cut for the phase 

determination. Figure 9 shows the phase determine logics for lidar-radar detected cloud 

layers.  The different logical paths for the phase determination contain different 

information, therefore different confidence levels.  Together with the phase information 

for each cloud layer, we also output the confidence level as well as supercooled water 

layer top. In the HDF file, the cloud phase has values from 1 to 3: 1-ice, 2-mixed-

phase, and 3-water.   
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Figure 8. Water topped stratiform cloud distribution as a function of cloud top temperature and 

maximum Ze within 500 m of the top. The thick dashed line indicate the Ze thresholds. 

 

 
 

Figure 9. Logics for the phase determination of lidar-radar detected layers. 

 

The approach didn’t use lidar depolarization ratio and layer integrated attenuated 

backscattering coefficient (IBC) as CALIPSO phase determination (Hu et al. 2009), but 

perform well in terms of these layer lidar properties as illustrated in Fig.10.   Horizontally 

oriented ice crystals, which are characterized by low depolarization and high IBC, are 

correctly identified as ice clouds or mixed-phase clouds.  Due to the limited sensitivity of 

the CPR, it is very likely that report supercooled water layers may contain low 

concentration small ice crystals, but these ice particles should have a very small 

contribution on the total water content and optical depth of the cloud layer. Figure 11 

show the seasonal cloud phase distribution map based on the 2007 and 2008 data.  

 



 

 

 

29 

 
Figure 10. Cloud phase distribution in terms of layer mean depolarization ratio and integrated 

backscattering coefficient (IBC). 

 

 
Figure 11. Seasonal cloud phase distributions based on 2007 and 2008 observations. 
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5 Data Product Output Format 

 

The format consists of metadata, which describes the data characteristics, and swath data, 

which provide cloud type, phase and their qualities for each cloud layer. The different 

cloud types are outputted based on the following code:  

-9  or 0 = Not determined 

1 = High cloud 

2 = Altostratus 

3 = Altocumulus 

4 = St 

5 = Sc 

6 = Cumulus 

7 = Nimbostratus Cloud 

8 = Deep Convection 

 

The Appendix A provides more details for these outputs.  

            

6 Operator Instructions 

 

The Level 2 cloud scenario classification processing software will be integrated into 

CORE.  It will be called using the standard CORE procedure for calling modules to 

operate on data files.  The output will be in the form of an HDF-EOS structure in 

memory, which can be saved by CORE and passed on to other Level 2 processing. 

 

This algorithm works at two different modes: radar only and combined radar and 

MODIS. If there are MODIS data and radar results indicate a single layer cloud system, 

algorithm selects the combined radar and MODIS mode, otherwise, algorithm uses radar 

only mode. But the combined radar and MODIS approach is still under development. The 

different modes are indicated in the outputs with algorithm flag. 

 

For quality assessment purpose, statistics for cloud cover and height are generated. 

Average cloud covers within 300 CPR profiles are calculated for all clouds, high, middle 

(As and Ac), low (St, Sc and Cu) and thick (Ns and deep convective) clouds, 

respectively. The occurrence of multi-layer clouds can be seen from this statistics.  The 

percentage of clouds masked by 2B-GEOPROF and analyzed in this algorithm is also 

given. It supposes to be 100%, and less than 100% means something wrong in the 

algorithm. The following is an example of output for cloud cover statistics form test data 

set 1. 
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************** Cloud Cover and Analysis Ststistics *********** 

 Index, Mean Lat, Mean  Lon, Percentage of Cloud Mask Analyzed,  

                       Cloud Cover:All,  High,  Mid, Low,and Thick Clouds 

  1    1.475   93.484  100.000   59.000   18.667   34.333   29.333 0.000 

  2    4.422   92.859  100.000   39.667   12.333   14.000   41.000 0.000 

  3    7.369   92.230  100.000   24.000    9.333   17.000    0.000 0.000 

  4   10.316   91.596  100.000   49.333    7.667   45.667    0.333 0.000 

  5   13.261   90.954  100.000   65.667   20.000   43.667    3.333 24.667 

  6   16.205   90.301  100.000    2.000    2.000    0.333    0.000 0.000 

  7   19.148   89.634  100.000   18.333    4.333   15.333    0.000 0.000 

  8   22.088   88.951  100.000   75.000    5.667   66.000    6.000 22.000 

  9   25.025   88.248  100.000   18.000    2.667   14.667    5.333 0.000 

 10   27.960   87.520  100.000   55.000   61.333    0.667    0.000 0.000 

 11   30.891   86.763  100.000   99.333   44.667    3.000    5.000 96.000 

 12   33.818   85.972  100.000   89.667   35.333   32.333    2.667 43.000 

 13   36.740   85.139  100.000   84.667   10.333   79.667    0.000 0.000 

 14   39.657   84.257  100.000    8.000    6.333    0.667    2.667 0.000 

 15   42.568   83.315  100.000    2.333    2.667    0.333    0.000 0.000 

 16   45.473   82.301  100.000   79.667   37.333   45.333    0.000 0.000 

 17   48.368   81.200  100.000   49.000   11.333   49.333    0.000 0.000 

 18   51.255   79.991  100.000   31.333    9.667   32.333    0.667 0.000 

 19   54.130   78.648  100.000    3.667    4.000    0.000    0.000 0.000 

 20   56.990   77.136  100.000   21.667    1.667    4.667    1.667 16.000 

 21   59.834   75.407  100.000   40.667   42.667    0.000    0.000 0.000 

 22   62.711   73.348  100.000   95.333   24.667   28.000    7.333 52.333 

 23   65.529   70.922  100.000   85.667    8.667    5.667   53.333 34.333 

 24   68.279   67.993  100.000   76.667    6.333   11.333   42.000 30.333 

 25   70.970   64.325  100.000   19.000    2.667    5.333    0.000 11.333 

 26   73.576   59.581  100.000   36.333    4.000   33.667    2.333 0.000 

 27   76.048   53.225  100.000   32.667   36.333    0.000    0.000 0.000 

 28   78.302   44.419  100.000   36.000   20.333   28.000    0.667 0.000 

   

Cloud height statistics (mean, standard deviation, maximum, and minimum of cloud base 

and top heights) for different type clouds in different latitudes are also calculated. These 

results provide useful information when algorithm or input data have problems. For 

example, if results indicate that high clouds occur below 2 km above sea level, there is 

something wrong in the algorithm or input data.    An example of output for test data set 

one is given below. Cloud types 1 to 8 represent high, As, Ac, St, Sc, Cu, Ns, and deep 

convective clouds, respectively. 

 

*******Cloud Height (base and top) Statistics for each type******  

 Type    Mean      STD      Max     Min 

      Whole Granuale Average              

  1    11.038    6.007   28.797    5.037               Cloud base 
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  1    12.381    5.560   28.917    5.157               Cloud top   

  2     4.205    1.719   12.477   -0.003 

  2     6.360    2.658   14.997    0.597 

  3     3.353    1.467    9.597   -0.003 

  3     4.305    1.634   10.437    0.597 

  4     0.176    0.364    2.157   -0.003 

  4     0.867    0.519    2.757    0.117 

  5     0.370    0.450    3.597   -0.003 

  5     1.531    0.711    5.637    0.117 

  6     1.032    1.213    6.957   -0.003 

  6     2.187    1.621   11.397    0.117 

  7     0.418    0.835    3.357   -0.003 

  7     4.429    2.105   13.077    1.557 

  8     1.169    1.408    3.837   -0.003 

  8     5.423    1.898   12.837    1.557 

      Tropical Average                          -23.5 to 23.5                 

  1    13.059    5.730   28.797    5.037 

  1    14.336    5.221   28.917    7.317 

  2     4.887    1.829    9.837    0.717 

  2     6.688    2.408   13.077    1.557 

  3     3.786    1.949    9.597   -0.003 

  3     5.390    2.171   10.437    2.757 

  4     0.255    0.507    2.157   -0.003 

  4     0.686    0.626    2.277    0.117 

  5     0.507    0.539    2.637   -0.003 

  5     1.467    0.813    4.917    0.117 

  6     1.134    1.285    6.957   -0.003 

  6     2.204    1.459    7.317    0.117 

  7     0.420    0.737    3.357   -0.003 

  7     4.325    1.394    9.477    1.557 

  8     0.697    1.149    3.837   -0.003 

  8     4.651    1.338    8.277    1.557 

      Subtropical Average                   -35 to –23.5 and 23.5 to 35  

  1    11.247    5.631   28.797    5.037 

  1    12.561    5.283   28.917    5.397 

  2     4.048    1.262    9.837    0.717 

  2     5.275    1.549   13.317    2.037 

  3     3.629    2.104    6.477    0.957 

  3     4.133    2.168    6.837    1.077 

  4     0.053    0.258    1.437   -0.003 

  4     0.559    0.439    2.037    0.117 

  5     0.849    0.571    3.597   -0.003 

  5     1.701    0.501    3.957    0.357 

  6     1.235    1.429    5.517   -0.003 

  6     1.918    1.476    5.877    0.117 

  7     0.250    0.625    3.357   -0.003 

  7     3.710    1.704    9.477    1.557 

  8     2.224    1.766    3.837   -0.003 
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  8     5.790    1.090    8.277    2.757 

      Midlatitude Average                   -55 to –35 and 35 to 55                       

  1    11.213    6.676   28.797    5.037 

  1    12.375    6.204   28.917    5.157 

  2     4.218    1.245   12.477    1.437 

  2     6.483    2.394   14.757    2.277 

  3     3.338    0.737    5.277    0.237 

  3     4.158    0.633    5.877    2.757 

  4     0.077    0.274    1.437   -0.003 

  4     0.782    0.428    2.037    0.117 

  5     0.231    0.397    3.357   -0.003 

  5     1.539    0.750    5.637    0.117 

  6     0.824    1.124    6.477   -0.003 

  6     2.011    1.548    7.557    0.117 

  7     1.142    1.262    3.357   -0.003 

  7     6.052    2.771   10.437    1.557 

  8     1.651    1.359    3.837   -0.003 

  8     5.462    1.660   10.677    1.797 

      High latitude Average                 -90 to –55 and 55 to 90                   

  1     9.891    5.687   28.797    5.037 

  1    11.356    5.260   28.917    5.157 

  2     3.879    1.962   10.557   -0.003 

  2     6.529    3.157   14.997    0.597 

  3     2.877    1.193    5.037    0.237 

  3     3.581    1.136    6.357    0.597 

  4     0.216    0.282    2.157   -0.003 

  4     1.161    0.329    2.757    0.357 

  5     0.427    0.341    3.117   -0.003 

  5     1.527    0.597    4.917    0.117 

  6     0.999    1.093    5.517   -0.003 

  6     2.374    1.814   11.397    0.117 

  7     0.302    0.700    3.357   -0.003 

  7     4.438    2.066   13.077    1.557 

  8     0.808    1.227    3.837   -0.003 

  8     5.710    2.310   12.837    1.797 

 

Another quick look for the performance of algorithm is to plot cloud type profile together 

with radar reflectivity and cloud mask profiles. An example of this plot is given in next 

page. Horizontal and vertical distributions of cloud types can be easily examined from 

this kind of plot. 
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8 Acronym List 

 

Aqua                         NASA's Earth Observing System PM Project 

ARM                         Atmospheric Radiation Measurement (ARM) 

CIRA            Cooperative Institute for Research in the Atmosphere 

CPR             Cloud Profiling Radar 

CORE                       CloudSat Operational and Research  

EOS            Earth Observing System 

HDF            Hierarchical Data Format 

IFOV            Instantaneous field of view 

IWC                          Ice Water Content 

LITE                         Lidar In-space Technology Experiment      

LWC                         Liquid Water Content 

MMCR                     Millimeter- wave cloud radar 

MODIS                     Moderate Resolution Imaging Spectroradiometer 

CALIPSO                Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations    

VTCW           Vehicle Time Code Word 

SGP                          The Southern Great Plains 

NSA                         The North Slope of Alaska  

TWP                         The Tropical Western Pacific 

CART                      Cloud and Radiation Testbed 

CRYSTAL-FACE    The Cirrus Regional Study of Tropical Anvils and Cirrus Layers -

 Florida Area Cirrus Experiment 

CPL                           Cloud Physics Lidar 

CRS                           Cloud Radar System 

 

 

9 Changes Since Algorithm Version P_R04  

 

Above algorithm details are based on the R04 release. The major changes for the R05 are 

summarized below. 

 

a) The analysis of multi-year ground-based lidar and radar measurements of 

stratiform mixed-phase clouds indicated that ice particles are presented in these 

clouds when the cloud top temperature is colder than -4 C (even for cases as 

warmer as -2C) and radar detects significant echoes (Zhang et al. 2017). Based 
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on this study, the Tice threshold in the Fig.9 is changed from -7 C to -3 C, 

which slightly increase mixed-phase cloud occurrence. 

b) Improved cloud clustering analysis: To avoid grouping low-level clouds with the 

middle- or high-level clouds, cloud clustering logics are improved to minimize the 

occurrence of these cases. 

c) The 2B-CLDCLASS-LIDAR uses the cloud fraction reported in the Lidar-aux, 

which is estimated with CALIOP measurements at the 330m horizontal resolution 

below the 8.2 km within the CPR footprint. The cloud fraction estimation 

algorithm was designed for warm boundary layer clouds, which underestimated 

cloud fractions for polar boundary layer ice clouds due to weaker signals.  Now 

the 2B-CLDCLASS-LIDAR algorithm identifies the possible underestimation and 

avoids its impact on cloud type classification. 

d) Conditions are added to prevent classifying middle-level clouds with a mean top 

temperature colder than -38 C as altocumulus (Ac). 

e) In the R04, some extensive shallow precipitating clouds were classified as the 

deep convective clouds, especially in the middle and high latitude. Now changes 

are made to classify them as Ns.  

 

10 Open Issues and comments 

 

Current outputs are limited to periods with both CPR and CALIOP observations. Thus, 

there are no cloud type outputs for the nighttime period during the DO-OP operation 

when only CALIOP measurements are available.  In the future, it is possible to develop a 

lidar-only version of the classification.      

 

Sc and St clouds are difficult to separate due to the footprint size of the averaged signals. 

Thus, it is better to combine them together as the boundary layer stratiform clouds for 

statistical analysis. 

 

Cu clouds include fair weather cumulus and cumulus congestus. Fair weather cumulus is 

typically broken and geometrically thin clouds. Cumulus congestus are more vertically 

developed and often have top in the middle level.  For statistical analyses, it is important 

to keep this in mind.  

  

Polar regions present many difficult conditions for boundary layer cloud classification. 

For example, there are often optically ice clouds, which are difficult to fit into any 

traditional boundary layer cloud types. 
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Low and middle clouds are separated based on cloud base heights above the surface.  

Over mountain areas, we could have St, Sc, or Cu clouds with base heights above 7 km or 

higher in terms of the mean sea level.  It is important to keep this in mind to better 

interpret statistical results.   

 

 

 

 

 

11 Appendix A:  2B-CLDCLASS-LIDAR Interface Control 

Document  

11.1 Input Field Specifications 

 

(1) Seconds since the start of the granule 
Name in file: Profile_time  Range: 0 to 6000 

Source: 2B-GEOPROF 012  Missing value: 

Field type (in file): REAL(4)  Missing value operator: 

Field type (in algorithm): REAL(4) Factor: 1 

Dimensions: nray  Offset: 0 

Units: seconds  MB: 0.139 

 

Seconds since the start of the granule for each profile.  The first profile is 0. 

 

(2) Data status flags 
Name in file: Data_status  Range: 0 to 127 

Source: 2B-GEOPROF 012  Missing value: 

Field type (in file): UINT(1)  Missing value operator: 

Field type (in algorithm): UINT(1) Factor: 1 

Dimensions: nray  Offset: 0 

Units: --  MB: 0.035 

 

This is a bit field that contains data status flags: 

 

Bit 0:  missing frame (0=false, 1=true) 

Bit 1:  SOH missing (0=false, 1=true) 

Bit 2:  GPS data valid (0=false, 1=true) 

Bit 3:  1 PPS lost (0=false, 1=true) 

Bit 4:  Star tracker 1 (0=off, 1=on) 

Bit 5:  Star tracker 2 (0=off, 1=on) 

Bit 6:  Coast (0=false, 1=true) 
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Bit 7:  NISC (0=false, 1=true) 

 

(3) TAI time for the first profile 
Name in file: TAI_start  Range: 0 to 6e+008 

Source: 2B-GEOPROF 012  Missing value: 

Field type (in file): REAL(8)  Missing value operator: 

Field type (in algorithm): REAL(8) Factor: 1 

Dimensions: <scalar>  Offset: 0 

Units: seconds  MB: 0 

 

The TAI timestamp for the first profile in the data file.  TAI is International Atomic 

Time:  seconds since 00:00:00 Jan 1, 1993. 

 

(4) Spacecraft Longitude 
Name in file: Longitude  Range: -180 to 180 

Source: 2B-GEOPROF 012  Missing value: 

Field type (in file): REAL(4)  Missing value operator: 

Field type (in algorithm): REAL(4) Factor: 1 

Dimensions: nray  Offset: 0 

Units: degrees  MB: 0.139 

 

Spacecraft geodetic longitude 

 

(5) Spacecraft Latitude 
Name in file: Latitude  Range: -90 to 90 

Source: 2B-GEOPROF 012  Missing value: 

Field type (in file): REAL(4)  Missing value operator: 

Field type (in algorithm): REAL(4) Factor: 1 

Dimensions: nray  Offset: 0 

Units: degrees  MB: 0.139 

 

Spacecraft Geodetic Latitude. 

 

(6) Range to the CPR boresight intercept with the geoid 
Name in file: Range_to_intercept  Range: 600 to 800 

Source: 2B-GEOPROF 012  Missing value: 

Field type (in file): REAL(4)  Missing value operator: 

Field type (in algorithm): REAL(4) Factor: 1 

Dimensions: nray  Offset: 0 

Units: km  MB: 0.139 

 

Range from the spacecraft to the CPR boresight intercept with the geoid. 
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(7) Height of range bin in Reflectivity/Cloud Mask above reference 

surface (~ mean sea level) 
Name in file: Height  Range: -5000 to 30000 

Source: 2B-GEOPROF 012  Missing value: -9999 

Field type (in file): INT(2)  Missing value operator: == 

Field type (in algorithm): INT(2) Factor: 1 

Dimensions: nbin,nray  Offset: 0 

Units: m  MB: 8.674 

 

Height of the radar range bins in meters above mean sea level. 

 

(8) Radar Reflectivity Factor 
Name in file: Radar_Reflectivity  Range: -40 to 50 

Source: 2B-GEOPROF 012  Missing value: -88.88 

Field type (in file): INT(2)  Missing value operator: == 

Field type (in algorithm): REAL(4) Factor: 0.01 

Dimensions: nbin,nray  Offset: 0 

Units: dBZe  MB: 8.674 

 

Radar reflectivity factor Ze is calculated with the echo power and other input data as 

described in Li and Durden (2001) 

 

(9) CPR Cloud Mask 
Name in file: CPR_Cloud_mask  Range: 0 to 40 

Source: 2B-GEOPROF 012  Missing value: -9 

Field type (in file): INT(1)  Missing value operator: == 

Field type (in algorithm): INT(1) Factor: 1 

Dimensions: nbin,nray  Offset: 0 

Units:  MB: 4.337 

 

Each CPR resolution volume is assigned 1 bit mask value: 

 

0 = No cloud detected 

1 = likely bad data 

5 = likely ground clutter 

5-10 = week detection found using along track integration. 

20 to 40 = Cloud detected .. increasing values represents clouds with lower chance of 

a being a false detection. 

 

(10) MODIS scene characterizations 
Name in file: MODIS_scene_char Range: 0 to 9 

Source: 2B-GEOPROF 012  Missing value: -9 

Field type (in file): INT(1)  Missing value operator: == 
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Field type (in algorithm): INT(1) Factor: 1 

Dimensions: nray  Offset: 0 

Units:  MB: 0.035 

 

This data includes MODIS pixel cloudiness characterization using cloudmask bit 

tests. See Table 3 for a detailed specification. 

 

 

 

 

 

(11) MODIS scene variability 
Name in file: MODIS_scene_var Range: 0 to 5 

Source: 2B-GEOPROF 012  Missing value: -9 

Field type (in file): INT(1)  Missing value operator: == 

Field type (in algorithm): INT(1) Factor: 1 

Dimensions: nray  Offset: 0 

Units:  MB: 0.035 

 

MODIS scene variability -variability of classification assigned to the 1 km MODIS 

pixels that compose the CloudSat footprint and immediately adjacent region. See 

Table 5 for a detail specification. 

 

(12) Digital Elevation Map 
Name in file: DEM_elevation  Range: -9999 to 8850 

Source: 2B-GEOPROF 012  Missing value: 9999 

Field type (in file): INT(2)  Missing value operator: == 

Field type (in algorithm): INT(2) Factor: 1 

Dimensions: nray  Offset: 0 

Units: meters  MB: 0.069 

 

Elevation in meters above Mean Sea Level. A value of -9999 indicates ocean. A value 

of 9999 indicates an error in calculation of the elevation. 

 

(13) Land Sea Flag 
Name in file: Navigation_land_sea_flag Range: 1 to 3 

Source: 2B-GEOPROF 012   Missing value: 

Field type (in file): UINT(1)   Missing value operator: 

Field type (in algorithm): INT(1)   Factor: 1 

Dimensions: nray   Offset: 0 

Units: --   MB: 0.035 

 

Flag indicating whether spacecraft is over land or sea: 
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1 = land 

2 = ocean 

3 = coast 

 

 

 

 

 

 

 

 

(14) Vertical Binsize  
Name in file: Vertical_binsize         Range: to 

Source: 2B-GEOPROF 012  Missing value: -9999 

Field type (in file): REAL(4)  Missing value operator: == 

Field type (in algorithm): REAL(4) Factor: 1 

Dimensions: <scalar>  Offset: 0 

Units: m  MB: 0 

 

Effective vertical height of the radar range bin. 

 

(15) Clutter Reduction Flag 
Name in file: Clutter_reduction_flag      Range: to 

Source: 2B-GEOPROF 012  Missing value: 

Field type (in file): INT(1)  Missing value operator: 

Field type (in algorithm): INT(1)  Factor: 1 

Dimensions: nray  Offset: 0 

Units:  MB: 0.035 

 

A value of 1 indicates that an estimate of surface clutter has been subtracted from the 

observed return power in bins 2 through 5 above the surface. A value of 0 indicate 

that NO clutter reduction has been applied. 

 

(16) Location of Surface Bin as determined by 1B CPR algorithm. The 

value here is shifted (as Height) 
Name in file: SurfaceHeightBin  Range: 1 to 125 

Source: 2B-GEOPROF 012  Missing value: -1 

Field type (in file): INT(1)  Missing value operator: == 

Field type (in algorithm): INT(1) Factor: 1 

Dimensions: nray  Offset: 0 

Units:  MB: 0.035 
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Location of Surface Bin as determined by 1B CPR algorithm. The value here is 

shifted (as is the Height matrix) so bins in neighboring rays are about the same height. 

 

 

 

 

 

 

 

 

 

(17) Cloud Fraction 
Name in file: CloudFraction  Range: 0 to 100 

Source: 2B-GEOPROF-LIDAR 004 Missing value: -9 

Field type (in file): INT(1)  Missing value operator: == 

Field type (in algorithm): INT(1)  Factor: 1 

Dimensions: nbin,nray  Offset: 0 

Units:  MB: 4.337 

 

The CloudFraction reports the fraction of lidar volumes in a radar resolution volume 

that contains hydrometeors. It is recorded per ray and per bin as a 1-byte integer 

variable. It is a percentage from 0 to 100. 

 

(18) Quality of radar and lidar data 
Name in file: UncertaintyCF  Range: 0 to 100 

Source: 2B-GEOPROF-LIDAR 004 Missing value: -9 

Field type (in file): INT(1)  Missing value operator: == 

Field type (in algorithm): INT(1)  Factor: 1 

Dimensions: nbin,nray  Offset: 0 

Units:  MB: 4.337 

 

The UncertaintyCF is a description of the quality of radar and lidar data. It is recorded 

per ray and per bin as 1-byte integer. 

 

0 means that neither radar data nor lidar data was found. 

1 indicates that only radar data has been found. 

2 indicates that only lidar data has been found. 

3 indicates that both radar data and lidar data were found. 

 

(19) Number of hydrometeor layers 
Name in file: CloudLayers  Range: 0 to 5 

Source: 2B-GEOPROF-LIDAR 004 Missing value: -9 
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Field type (in file): INT(1)  Missing value operator: == 

Field type (in algorithm): INT(1)  Factor: 1 

Dimensions: nray  Offset: 0 

Units:  MB: 0.035 

 

CloudLayers is a description of the number of the observed hydrometeor layers in the 

vertical column of the radar footprint. It is recoded per ray as 1-byte integer. Its value 

is from 0 to 5. A maximum of 5 layers are recorded. 

 

 

 

 

(20) Height of Layer Base 
Name in file: LayerBase  Range: 0 to 25000 

Source: 2B-GEOPROF-LIDAR 004 Missing value: -99 

Field type (in file): INT(2)  Missing value operator: == 

Field type (in algorithm): REAL(4) Factor: 1 

Dimensions: ncloud,nray  Offset: 0 

Units: m  MB: 0.347 

 

LayerBase is a description of the height of the observed hydrometeor layer base. It is 

recoded per ray as 4-byte float. Its value is from 0 to 25000. The units are meters. 

 

(21) Height of layer top 
Name in file: LayerTop  Range: 0 to 25000 

Source: 2B-GEOPROF-LIDAR 004 Missing value: -99 

Field type (in file): INT(2)  Missing value operator: == 

Field type (in algorithm): REAL(4) Factor: 1 

Dimensions: ncloud,nray  Offset: 0 

Units: m  MB: 0.347 

 

LayerTop is a description of the height of the observed hydrometeor layer top. It is 

recoded per ray as 4-byte float. Its value is from 0 to 25000. The units are meters. 

 

(22) Flag of layer base 
Name in file: FlagBase  Range: 0 to 3 

Source: 2B-GEOPROF-LIDAR 004 Missing value: -9 

Field type (in file): INT(1)  Missing value operator: == 

Field type (in algorithm): INT(1)  Factor: 1 

Dimensions: ncloud,nray  Offset: 0 

Units:  MB: 0.173 
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FlagBase is the contribution flag for each layer base. It tells which instrument has 

been used to identify the base height. It is recorded per ray as 1-byte integer. 

 

0 means that neither radar nor lidar finds a layer base. 

1 indicates that only the radar has found the base. 

2 indicates that only the lidar has found the base. 

3 indicates that both radar and lidar have found the base. 

-9 corresponds to missing data. 

 

 

 

 

 

 (23) Flag of layer top 
Name in file: FlagTop  Range: 0 to 3 

Source: 2B-GEOPROF-LIDAR 004 Missing value: -9 

Field type (in file): INT(1)  Missing value operator: == 

Field type (in algorithm): INT(1)  Factor: 1 

Dimensions: ncloud,nray  Offset: 0 

Units:  MB: 0.173 

 

FlagTop is the contribution flag for each layer top. It tells which instrument is finding 

the top height. It is recorded per ray as 1-byte integer. 

 

0 means that neither radar nor lidar find a top. 

1 indicates that only the radar has found the top. 

2 indicates that only the lidar has found the top. 

3 indicates that both radar and lidar have found the top. 

-9 corresponds to missing data. 

 

(24) Specific humidity 
Name in file: Specific_humidity         Range: to 

Source: ECMWF-AUX 008  Missing value: -999 

Field type (in file): REAL(4)  Missing value operator: == 

Field type (in algorithm): REAL(4) Factor: 1 

Dimensions: nbin,nray  Offset: 0 

Units: kg/kg  MB: 17.349 

 

(25) Temperature 
Name in file: Temperature         Range: to 

Source: ECMWF-AUX 008  Missing value: -999 

Field type (in file): REAL(4)  Missing value operator: == 
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Field type (in algorithm): REAL(4) Factor: 1 

Dimensions: nbin,nray  Offset: 0 

Units: K  MB: 17.349 

 

(26) Atmospheric pressure 
Name in file: Pressure         Range: to 

Source: ECMWF-AUX 008  Missing value: -999 

Field type (in file): REAL(4)  Missing value operator: == 

Field type (in algorithm): REAL(4) Factor: 1 

Dimensions: nbin,nray  Offset: 0 

Units: Pa  MB: 17.349 

 

 

 

(27) Attenuated Backscatter 1064 
Name in file: TAB1064  Range: 0 to 0.4 

Source: LIDAR-AUX 004  Missing value: -9999 

Field type (in file): REAL(4)  Missing value operator: == 

Field type (in algorithm): REAL(4) Factor: 1 

Dimensions: lidar_l1_583,nray  Offset: 0 

Units: km^-1 sr^-1  MB: 80.915 

 

Attenuated Backscatter 1064 in a CloudSat footprint 

 

(28) Perpendicular Attenuated Backscatter 532 
Name in file: PAB532  Range: 0 to 0.2 

Source: LIDAR-AUX 004  Missing value: -9999 

Field type (in file): REAL(4)  Missing value operator: == 

Field type (in algorithm): REAL(4) Factor: 1 

Dimensions: lidar_l1_583,nray  Offset: 0 

Units: km^-1 sr^-1  MB: 80.915 

 

Perpendicular Attenuated Backscatter 532 in a CloudSat footprint 

 

(29) Total Attenuated Backscatter 532 
Name in file: TAB532  Range: 0 to 0.4 

Source: LIDAR-AUX 004  Missing value: -9999 

Field type (in file): REAL(4)  Missing value operator: == 

Field type (in algorithm): REAL(4) Factor: 1 

Dimensions: lidar_l1_583,nray  Offset: 0 

Units: km^-1 sr^-1  MB: 80.915 

 

Total Attenuated Backscatter 532 in a CloudSat footprint 
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(30) Lidar Cloud Mask 
Name in file: Mask  Range: 0 to 1 

Source: LIDAR-AUX 004  Missing value: -99 

Field type (in file): INT(1)  Missing value operator: == 

Field type (in algorithm): INT(1) Factor: 1 

Dimensions: Lidar60m,nray  Offset: 0 

Units:  MB: 11.936 

 

Lidar cloud mask detected at CloudSat footprint and 60 m vertical resolution 

 

 

 

 

(31) Lidar 60m bin height 
Name in file: height_lidar60m  Range: -2 to 30 

Source: LIDAR-AUX 004  Missing value: 

Field type (in file): REAL(4)  Missing value operator: 

Field type (in algorithm): REAL(4) Factor: 1 

Dimensions: Lidar60m  Offset: 0 

Units:  MB: 0.001 

 

Lidar 60m bin height used for the 60m cloud mask 

 

(32) Day/night flag 
Name in file: Day_night_flag  Range: 0 to 1 

Source: LIDAR-AUX 004  Missing value: 

Field type (in file): INT(1)  Missing value operator: 

Field type (in algorithm): INT(1) Factor: 1 

Dimensions: nray  Offset: 0 

Units:  MB: 0.035 

 

Day_night_flag from CALIPSO file: 0 day and 1 night 

 

(33) Cloud fraction 
Name in file: Cloud_fraction  Range: 0 to 100 

Source: LIDAR-AUX 004  Missing value: -99 

Field type (in file): REAL(4)  Missing value operator: == 

Field type (in algorithm): REAL(4) Factor: 1 

Dimensions: Lidar60m,nray  Offset: 0 

Units: %  MB: 47.744 

 

Cloud fraction in CloudSat footprint calculated with CALIPSO 330 m data. Cloud 

fraction smaller than 100% is reported mainly for boundary layer clouds. 
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(34) Number of CALIPSO profile collocated within a CloudSat 

footprint 
Name in file: Col_count  Range: 0 to 15 

Source: LIDAR-AUX 004  Missing value: -99 

Field type (in file): INT(2)  Missing value operator: == 

Field type (in algorithm): INT(2) Factor: 1 

Dimensions: nray  Offset: 0 

Units:  MB: 0.069 

 

Number of CALIPSO profile collocated within a CloudSat footprint. The collocation 

is based on the surface footprint lats and lons of CloudSat and CALIPSO. The 

distance between them smaller than 1.14 at latitude smaller than 60 degree, and it is 

increase slightly as latitude increase. 

 

11.2 Product Field Specifications 

 

(1) Seconds since the start of the granule 
Name in file: Profile_time Range: 0 to 6000 

Source: 2B-GEOPROF 012 Missing value: 

Field type (in file): REAL(4) Missing value operator: 

Field type (in algorithm): REAL(4) Factor: 1 

Dimensions: nray Offset: 0 

Units: seconds MB: 0.139 

 

Seconds since the start of the granule for each profile.  The first profile is 0. 

 

(2) UTC seconds since 00:00 Z of the first profile 
Name in file: UTC_start  Range: 0 to 86400 

Source: 2B-GEOPROF 012  Missing value: 

Field type (in file): REAL(4)  Missing value operator: 

Field type (in algorithm): REAL(4) Factor: 1 
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Dimensions: <scalar>  Offset: 0 

Units: seconds  MB: 0 

 

The UTC seconds since 00:00 Z of the first profile in the data file. 

 

 

 

 

 

 

 

(3) TAI time for the first profile 
Name in file: TAI_start  Range: 0 to 6e+008 

Source: 2B-GEOPROF 012  Missing value: 

Field type (in file): REAL(8)  Missing value operator: 

Field type (in algorithm): REAL(8) Factor: 1 

Dimensions: <scalar>  Offset: 0 

Units: seconds  MB: 0 

 

The TAI timestamp for the first profile in the data file.  TAI is International Atomic 

Time:  seconds since 00:00:00 Jan 1 1993. 

 

(4) Spacecraft Latitude 
Name in file: Latitude  Range: -90 to 90 

Source: 2B-GEOPROF 012  Missing value: 

Field type (in file): REAL(4)  Missing value operator: 

Field type (in algorithm): REAL(4) Factor: 1 

Dimensions: nray  Offset: 0 

Units: degrees  MB: 0.139 

 

Spacecraft Geodetic Latitude 

 

(5) Spacecraft Longitude 
Name in file: Longitude  Range: -180 to 180 

Source: 2B-GEOPROF 012  Missing value: 

Field type (in file): REAL(4)  Missing value operator: 

Field type (in algorithm): REAL(4) Factor: 1 

Dimensions: nray  Offset: 0 

Units: degrees  MB: 0.139 

 

Spacecraft geodetic longitude 
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(6) Height of range bin in Reflectivity/Cloud Mask above reference 

surface (~ mean sea level) 
Name in file: Height  Range: -5000 to 30000 

Source: 2B-GEOPROF 012  Missing value: -9999 

Field type (in file): INT(2)  Missing value operator: == 

Field type (in algorithm): INT(2) Factor: 1 

Dimensions: nbin,nray  Offset: 0 

Units: m  MB: 8.674 

 

Height of the radar range bins in meters above mean sea level. 

 

 

(7) Range to the CPR boresight intercept with the geoid 
Name in file: Range_to_intercept  Range: 600 to 800 

Source: 2B-GEOPROF 012  Missing value: 

Field type (in file): REAL(4)  Missing value operator: 

Field type (in algorithm): REAL(4) Factor: 1 

Dimensions: nray  Offset: 0 

Units: km  MB: 0.139 

 

Range from the spacecraft to the CPR boresight intercept with the geoid. 

 

(8) Digital Elevation Map 
Name in file: DEM_elevation  Range: -9999 to 8850 

Source: 2B-GEOPROF 012  Missing value: 9999 

Field type (in file): INT(2)  Missing value operator: == 

Field type (in algorithm): INT(2) Factor: 1 

Dimensions: nray  Offset: 0 

Units: meters  MB: 0.069 

 

Elevation in meters above Mean Sea Level. A value of -9999 indicates ocean. A value 

of 9999 indicates an error in calculation of the elevation. 

 

(9) Vertical Binsize 
Name in file: Vertical_binsize         Range: to 

Source: 2B-GEOPROF 012  Missing value: -9999 

Field type (in file): REAL(4)  Missing value operator: == 

Field type (in algorithm): REAL(4) Factor: 1 

Dimensions: <scalar>  Offset: 0 

Units: m  MB: 0 

 

Effective vertical height of the radar range bin. 
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(10) Nominal satellite pitch angle offset from nadir 
Name in file: Pitch_offset  Range: -90 to 90 

Source: 2B-GEOPROF 012  Missing value: 

Field type (in file): REAL(4)  Missing value operator: 

Field type (in algorithm): REAL(4) Factor: 1 

Dimensions: <scalar>  Offset: 0 

Units: degrees  MB: 0 

 

The pitch angle offset from nadir during normal operations. Pitch up is positive (radar 

points along the flight track in the direction of motion), down is negative (radar points 

along the flight track opposite the direction of motion). 

 

(11) Nominal satellite roll angle offset from nadir 
Name in file: Roll_offset  Range: -90 to 90 

Source: 2B-GEOPROF 012  Missing value: 

Field type (in file): REAL(4)  Missing value operator: 

Field type (in algorithm): REAL(4) Factor: 1 

Dimensions: <scalar>  Offset: 0 

Units: degrees  MB: 0 

 

The roll angle offset from nadir during normal operations. Positive roll results in the 

radar pointing to the right of the flight track. Negative roll to the left. 

 

(12) Data Quality 
Name in file: Data_quality  Range: 0 to 127 

Source: 2B-GEOPROF 012  Missing value: 

Field type (in file): UINT(1)  Missing value operator: 

Field type (in algorithm): INT(2) Factor: 1 

Dimensions: nray  Offset: 0 

Units: --  MB: 0.035 

 

Flags indicating data quality.  If 0, then data is of good quality.  Otherwise, treat as a 

bit field with 8 flags: 

 

0: RayStatus_validity not normal. 

1: GPS data not valid. 

2: Temperatures not valid. 

3: Radar telemetry data quality is not normal. 

4: Peak power is not normal. 

5: CPR calibration maneuver. 

6: Missing frame. 

7: Not used. 
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(13) Data status flags 
Name in file: Data_status  Range: 0 to 127 

Source: 2B-GEOPROF 012  Missing value: 

Field type (in file): UINT(1)  Missing value operator: 

Field type (in algorithm): UINT(1) Factor: 1 

Dimensions: nray  Offset: 0 

Units: --  MB: 0.035 

 

This is a bit field that contains data status flags: 

 

Bit 0:  missing frame (0=false, 1=true) 

Bit 1:  SOH missing (0=false, 1=true) 

Bit 2:  GPS data valid (0=false, 1=true) 

Bit 3:  1 PPS lost (0=false, 1=true) 

Bit 4:  Star tracker 1 (0=off, 1=on) 

Bit 5:  Star tracker 2 (0=off, 1=on) 

Bit 6:  Coast (0=false, 1=true) 

Bit 7:  NISC (0=false, 1=true) 

 

(14) CPR bus orientation (target ID) 
Name in file: Data_targetID  Range: 0 to 81 

Source: 2B-GEOPROF 012  Missing value: 

Field type (in file): UINT(1)  Missing value operator: 

Field type (in algorithm): INT(1) Factor: 1 

Dimensions: nray  Offset: 0 

Units: --  MB: 0.035 

 

The target id indicates the orientation of the spacecraft bus. For normal operations the 

target ID is 0. The complete ID table is listed below: 

 

Control Frame 0 
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0: CPR to point in 300 seconds - Nominal science mode 

1 - 15: Target ID for testing - not planned for operational use 

 

Control Frame 0, CPR Calibration 

16: CPR to point in 160 seconds 

17: CPR 15º to the right 

18: CPR 15º to the left 

19: CPR 10º to the right -- default rotation 

20: CPR 10º to the left -- default rotation 

21: CPR 5º to the right 

21: CPR 5º to the left 

23 - 29: Target ID for testing - not planned for operational use 

30 - 36: CPR rotation - not planned for operational use 

37 - 39: Not planned for operational use 

 

Control Frame 1, Four thruster closed-loop 

40: Rotation into the OR orientation 

41: Rotation into the x-track along the anti-ang momentum 

42: Rotation into the x-track along ang momentum 

43: Rotation into the orbit lower orientation 

44: Rotation into alt. OR w/ CPR away from Sun 

45 - 49: Not planned for operational use 

 

Control Frame 2, One thruster open-loop 

50: Rotation into the OR orientation 

51: Rotation into the x-track along the anti-ang momentum 

52: Rotation into the x-track along ang momentum 

53: Rotation into the orbit lower orientation 

54: Rotation into alt. OR w/ CPR away from Sun 

55 - 59: Not planned for operational use 

 

Control Frame 3, Two thruster open-loop 

60: Rotation into the OR orientation 

61: Rotation into the x-track along the anti-ang momentum 

62: Rotation into the x-track along ang momentum 

63: Rotation into the orbit lower orientation 

64: Rotation into alt. OR w/ CPR away from Sun 

65 - 69: Not planned for operational use 

 

Control Frame 4, Four thruster open-loop 
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70: Rotation into the OR orientation 

71: Rotation into the x-track along the anti-ang momentum 

72: Rotation into the x-track along ang momentum 

73: Rotation into the orbit lower orientation 

74: Rotation into alt. OR w/ CPR away from Sun 

75 - 80: Not planned for operational use 

 

Control Frame 5 

81: Body into the x-track along the anti-ang momentum 82 - 1023: Not planned for 

operational use 

 

(15) Cloud Layer 
Name in file: Cloudlayer  Range: 0 to 10 

Source: 2B-CLDCLASS-LIDAR 000 Missing value: -9 

Field type (in file): INT(1)  Missing value operator: == 

Field type (in algorithm): INT(1)  Factor: 1 

Dimensions: nray  Offset: 0 

Units:  MB: 0.035 

 

The total cloud layer by combining radar and lidar measurements 

 

(16) Cloud Layer Base 
Name in file: CloudLayerBase  Range: 0 to 20 

Source: 2B-CLDCLASS-LIDAR 000 Missing value: -99 

Field type (in file): REAL(4)  Missing value operator: == 

Field type (in algorithm): REAL(4) Factor: 1 

Dimensions: ncloud,nray  Offset: 0 

Units: km  MB: 0.694 

 

Combined cloud base height 

 

(17) Layer Base Flag 
Name in file: LayerBaseFlag       Range: to 

Source: 2B-CLDCLASS-LIDAR 000 Missing value: -9 

Field type (in file): INT(1)  Missing value operator: == 

Field type (in algorithm): INT(1)  Factor: 1 

Dimensions: ncloud,nray  Offset: 0 

Units:  MB: 0.173 

 

For the base 1 for radar and 2 for lidar when both lidar and radar detected layer. 

When only lidar detected a cloud layer, such as supercooled water cloud, we assign 3 

for it 
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(18) Cloud Layer Top 
Name in file: CloudLayerTop  Range: 0 to 20 

Source: 2B-CLDCLASS-LIDAR 000 Missing value: -99 

Field type (in file): REAL(4)  Missing value operator: == 

Field type (in algorithm): REAL(4) Factor: 1 

Dimensions: ncloud,nray  Offset: 0 

Units: km  MB: 0.694 

 

Combined cloud top height 

 

 

(19) Layer top Flag 
Name in file: LayerTopFlag  Range: 1 to 3 

Source: 2B-CLDCLASS-LIDAR 000 Missing value: -9 

Field type (in file): INT(1)  Missing value operator: == 

Field type (in algorithm): INT(1)  Factor: 1 

Dimensions: ncloud,nray  Offset: 0 

Units:  MB: 0.173 

 

For the top 1 for radar and 2 for lidar when both lidar and radar detected layer. When 

only lidar detected a cloud layer, such as supercooled water cloud, we assign 3 for it 

 

(20) Cloud Fraction 
Name in file: CloudFraction Range: 0 to 1 

Source: 2B-CLDCLASS-LIDAR 000 Missing value: -99 

Field type (in file): REAL(4) Missing value operator: == 

Field type (in algorithm): REAL(4) Factor: 1 

Dimensions: ncloud,nray Offset: 0 

Units: MB: 0.694 

 

Cloud fraction within CloudSat foot print determined from CALIPSO lidar 

measurements. 

 

(21) Cloud Phase 

Name in file: CloudPhase  Range: 1 to 3 

Source: 2B-CLDCLASS-LIDAR 000 Missing value: -9 

Field type (in file): INT(1)  Missing value operator: == 

Field type (in algorithm): INT(1)  Factor: 1 

Dimensions: ncloud,nray  Offset: 0 

Units:  MB: 0.173 

 

Cloud phase identified by using CALIPSO feature, temperature, and radar reflectivity 

1-ice, 2 mixed, 3-water 
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(22) Cloud Phase Confidence Level 
Name in file: CloudPhaseConfidenceLevel Range: 0 to 10 

Source: 2B-CLDCLASS-LIDAR 000  Missing value: -9 

Field type (in file): INT(1)  Missing value operator: == 

Field type (in algorithm): INT(1)  Factor: 1 

Dimensions: ncloud,nray  Offset: 0 

Units:  MB: 0.173 

 

Confidence level assigned to the cloud phase for each layer. It has a value ranging 

from 0 to 10. 10 indicates the highest confidence level. If confidence level is below 5, 

use the cloud phase with a caution. 

 

(23) Cloud Layer Type 
Name in file: CloudLayerType  Range: 0 to 8 

Source: 2B-CLDCLASS-LIDAR 000 Missing value: -9 

Field type (in file): INT(1)  Missing value operator: == 

Field type (in algorithm): INT(1)  Factor: 1 

Dimensions: ncloud,nray  Offset: 0 

Units:  MB: 0.173 

 

Cloud type for each layer. 

0 =  Not determined 

1 =  Cirrus 

2 =  Altostratus 

3 =  Altocumulus 

4 =  Stratus 

5 =  Stratocumulus 

6 =  Cumulus 

7 =  Nimbostratus 

8 =  Deep convection 
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(24) Cloud Type Quality 
Name in file: CloudTypeQuality Range: 0 to 1 

Source: 2B-CLDCLASS-LIDAR 000 Missing value: -99 

Field type (in file): REAL(4) Missing value operator: == 

Field type (in algorithm): REAL(4) Factor: 1 

Dimensions: ncloud,nray Offset: 0 

Units: MB: 0.694 

 

Cloud Type Quality decided based on fuzzy-logic classification. 

 

 

(25) Precipitation Flag 
Name in file: PrecipitationFlag Range: -1 to 3 

Source: 2B-CLDCLASS-LIDAR 000 Missing value: -9 

Field type (in file): INT(1) Missing value operator: == 

Field type (in algorithm): INT(1) Factor: 1 

Dimensions: ncloud,nray Offset: 0 

Units: MB: 0.173 

 

Precipitation flag indicate whether the cloud layer produces precipitation. 

Precipitation flag has the following values: 

 

-1 = not determined 

0 = no precipitation 

1 = liquid precipitation 

2 = solid precipitation 

3 = possible drizzle (?) 

 

(26) The logical path of phase determination 
Name in file: Phase_log Range: 0 to 3 

Source: 2B-CLDCLASS-LIDAR 000 Missing value: -9 

Field type (in file): INT(1) Missing value operator: == 

Field type (in algorithm): INT(1) Factor: 1 

Dimensions: ncloud,nray Offset: 0 

Units: MB: 0.173 

 

Record the logical path of phase determination 

 

(27) Water layer top 
Name in file: Water_layer_top Range: -9 to 12 

Source: 2B-CLDCLASS-LIDAR 000 Missing value: -9 

Field type (in file): REAL(4) Missing value operator: == 

Field type (in algorithm): REAL(4) Factor: 1 
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Dimensions: ncloud,nray Offset: 0 

Units: km MB: 0.694 

 

This provides water layer top height in mixed-phase and water clouds. This is mainly 

to indicate the location of possible water layer in mixed-phase clouds. 
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